A007998
Number of primitive solutions to x + y + z = 0 (mod n).
Original entry on oeis.org
1, 2, 3, 3, 4, 5, 5, 7, 8, 9, 9, 15, 11, 17, 17, 18, 18, 31, 21, 33, 30, 33, 30, 53, 34, 48, 46, 53, 43, 87, 47, 73, 69, 79, 66, 110, 65, 100, 94, 111, 80, 159, 86, 135, 130, 135, 108, 202, 116, 181, 153, 175, 133, 255, 150, 212
Offset: 1
A032195
Number of necklaces with 10 black beads and n-10 white beads.
Original entry on oeis.org
1, 1, 6, 22, 73, 201, 504, 1144, 2438, 4862, 9252, 16796, 29414, 49742, 81752, 130752, 204347, 312455, 468754, 690690, 1001603, 1430715, 2016144, 2804880, 3856892, 5245128, 7060984, 9414328, 12440668, 16301164
Offset: 10
- C. G. Bower, Transforms (2)
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Index entries for sequences related to necklaces
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-12,17,9,-32,10,29,-29,-9,28,-7,-5,-5,-7,28,-9,-29,29,10,-32,9,17,-12,-2,4,-1).
-
k = 10; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)
A032196
Number of necklaces with 11 black beads and n-11 white beads.
Original entry on oeis.org
1, 1, 6, 26, 91, 273, 728, 1768, 3978, 8398, 16796, 32066, 58786, 104006, 178296, 297160, 482885, 766935, 1193010, 1820910, 2731365, 4032015, 5864750, 8414640, 11920740, 16689036, 23107896, 31666376, 42975796
Offset: 11
- C. G. Bower, Transforms (2)
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Index entries for sequences related to necklaces
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1,1,-10,45,-120,210,-252,210,-120,45,-10,1).
-
k = 11; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)
DeleteCases[CoefficientList[Series[(x^11) (1 - 9 x + 41 x^2 - 109 x^3 + 191 x^4 - 229 x^5 + 191 x^6 - 109 x^7 + 41 x^8 - 9 x^9 + x^10)/((1 - x)^10 (1 - x^11)), {x, 0, 39}], x], 0] (* Michael De Vlieger, Oct 10 2016 *)
A032197
Number of necklaces with 12 black beads and n-12 white beads.
Original entry on oeis.org
1, 1, 7, 31, 116, 364, 1038, 2652, 6310, 14000, 29414, 58786, 112720, 208012, 371516, 643856, 1086601, 1789515, 2883289, 4552275, 7056280, 10752060, 16128424, 23841480, 34769374, 50067108, 71250060, 100276894, 139672312
Offset: 12
- C. G. Bower, Transforms (2)
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Index entries for sequences related to necklaces
- Index entries for linear recurrences with constant coefficients, signature (4,-4,-2,4,-4,12,-12,2,2,-12,24,-18,4,4,-6,15,-20,0,10,-4,10,0,-20,15,-6,4,4,-18,24,-12,2,2,-12,12,-4,4,-2,-4,4,-1).
-
k = 12; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)
A058936
Decomposition of Stirling's S(n,2) based on associated numeric partitions.
Original entry on oeis.org
0, 1, 3, 8, 3, 30, 20, 144, 90, 40, 840, 504, 420, 5760, 3360, 2688, 1260, 45360, 25920, 20160, 18144, 403200, 226800, 172800, 151200, 72576, 3991680, 2217600, 1663200, 1425600, 1330560, 43545600, 23950080, 17740800, 14968800, 13685760, 6652800, 518918400
Offset: 1
Triangle begins:
0;
1;
3;
8, 3;
30, 20;
144, 90, 40;
840, 504, 420;
...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 831.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Cf.
A000012,
A000035,
A000027,
A004526,
A022003,
A008619,
A000217,
A007997,
A001399,
A011765 A008620,
A027656,
A002620,
A000292,
A008627.
A195798
Number of triangular n X n X n 0..1 arrays with all rows and diagonals having the same length having the same sum, with corners zero.
Original entry on oeis.org
1, 1, 2, 8, 16, 64, 1184, 5300, 130324, 14748808, 421963232, 54990266540
Offset: 1
Some solutions for n=5
......0..........0..........0..........0..........0..........0..........0
.....0.0........0.0........0.0........0.1........0.1........0.1........0.1
....0.1.0......1.0.1......1.1.1......0.0.0......0.1.0......1.0.1......1.1.1
...0.1.1.0....0.0.0.0....0.1.1.0....1.0.0.0....1.1.1.0....1.0.0.0....1.1.1.0
..0.0.0.0.0..0.0.1.0.0..0.0.1.0.0..0.0.0.1.0..0.0.0.1.0..0.0.1.1.0..0.0.1.1.0
A332050
Number of ways to arrange Palago tiles in a triangle of side length n, up to rotation, reflection, and swapping colors.
Original entry on oeis.org
1, 1, 7, 129, 9882, 2391930, 1743402771, 3812799008214, 25015772571200361, 492385451093553791610, 29074868501520453489499806, 5150525730438768829942800034449, 2737200544710109691113626131721984885, 4363981784043856212945753449232929426200329
Offset: 0
-
a[n_] = (3^Binomial[n + 1, 2] +
3*3^((Binomial[n + 1, 2] - Ceiling[n/2])/2) +
If[Mod[n, 3] == 1, 0, 2*3^(Binomial[n + 1, 2]/3)])/6
A349216
Number of ternary triples (u,v,w) with 1 <= u < v < w <= n.
Original entry on oeis.org
0, 0, 1, 2, 4, 8, 13, 20, 30, 40, 53, 70, 88, 110, 137, 166, 200, 240, 281, 328, 382, 438, 501, 572, 646, 728, 819, 910, 1010, 1120, 1233, 1356, 1490, 1628, 1777, 1938, 2100, 2274, 2461, 2652, 2856, 3074, 3297, 3534, 3786, 4040, 4309, 4594, 4884, 5190, 5513, 5842, 6188, 6552, 6917
Offset: 1
For n = 7 the 13 ternary triples are (1, 2, 3), (2, 3, 4), (1, 3, 5), (3, 4, 5), (1, 2, 6), (2, 4, 6), (1, 5, 6), (4, 5, 6), (2, 3, 7), (1, 4, 7), (3, 5, 7), (2, 6, 7), (5, 6, 7).
-
Array[Sum[Sum[Sum[Boole[IntegerExponent[w + w - u - v, 3] > IntegerExponent[GCD[w - u, w - v], 3]], {u, (v - 1)}], {v, 2, (w - 1)}], {w, 3, #}] &, 55] (* Michael De Vlieger, Feb 15 2022 *)
-
A349216(n) = sum(w=3,n,sum(v=2,(w-1),sum(u=1,(v-1),valuation(w+w-u-v,3) > valuation(gcd(w-u,w-v),3)))); \\ Antti Karttunen, Nov 13 2021
-
def a(n):
t=3^ceil(log(n,3))
counter=0
for w in range(n):
for v in range(w):
for u in range(v):
if min(gcd(w-u,3^t),gcd(w-v,3^t))
Comments