A004306
Rook polynomials.
Original entry on oeis.org
1, 1, 2, 6, 24, 44, 80, 144, 264, 484, 888, 1632, 3000, 5516, 10144, 18656, 34312, 63108, 116072, 213488, 392664, 722220, 1328368, 2443248, 4493832, 8265444, 15202520, 27961792, 51429752, 94594060, 173985600, 320009408, 588589064, 1082584068, 1991182536
Offset: 0
- D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..400
- N. Metropolis, M. L. Stein, and P. R. Stein, Permanents of cyclic (0,1) matrices, Journal of Combinatorial Theory, Volume 7, Issue 4, December 1969, Pages 291-321.
- Earl Glen Whitehead, Jr., Four-discordant permutations, J. Austral. Math. Soc. Ser. A 28 (1979), no. 3, 369-377.
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,-1).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+ 2*x^3+13*x^4-3*x^5-6*x^6-10*x^7)/(1-2*x+x^4) )); // G. C. Greubel, Apr 22 2019
-
Join[{1,1,2,6},LinearRecurrence[{2,0,0,-1},{24,44,80,144},40]] (* or *) CoefficientList[ Series[ (1-x+2x^3+13x^4- 3x^5- 6x^6- 10x^7)/ (1-2x+ x^4),{x,0,40}],x] (* Harvey P. Dale, Dec 13 2011 *)
-
my(x='x+O('x^40)); Vec((1-x+2*x^3+13*x^4-3*x^5-6*x^6-10*x^7)/(1 -2*x+x^4)) \\ G. C. Greubel, Apr 22 2019
-
((1-x+2*x^3+13*x^4-3*x^5-6*x^6-10*x^7)/(1-2*x+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019
A000382
Restricted permutations.
Original entry on oeis.org
6, 11, 20, 36, 65, 119, 218, 400, 735, 1351, 2484, 4568, 8401, 15451, 28418, 52268, 96135, 176819, 325220, 598172, 1100209, 2023599, 3721978, 6845784, 12591359, 23159119, 42596260, 78346736, 144102113, 265045107, 487493954
Offset: 4
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 4..1000
- N. S. Mendelsohn, Permutations with confined displacement, Canad. Math. Bull., 4 (1961), 29-38.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
-
A000382:=-(-6+z+2*z**2+4*z**3+z**4)/(z-1)/(z**3+z**2+z-1); [Conjectured by Simon Plouffe in his 1992 dissertation.]
a:= n-> if n<4 then 0 elif n=4 then 6 else (Matrix([[11,7,4,2]]). Matrix(4, (i,j)-> if (i=j-1) then 1 elif j=1 then [2,0,0,-1][i] else 0 fi)^(n-2))[1,4] fi: seq(a(n), n=4..30); # Alois P. Heinz, Aug 26 2008
-
a[n_] := Which[n<4, 0, n == 4, 6, True, {11, 7, 4, 2}.MatrixPower[Table[Which[i == j-1, 1, j == 1, {2, 0, 0, -1}[[i]], True, 0], {i, 1, 4}, {j, 1, 4}], n-2] // Last]; Table[a[n], {n, 4, 27}] (* Jean-François Alcover, Mar 12 2014, after Alois P. Heinz *)
A321352
Triangle T(n,k) giving the number of permutations pi of {1,2,...,n} such that for all i, pi(i) is not in {i, i+1, ..., i+k-1} (mod n), with 0 <= k <= n - 1.
Original entry on oeis.org
1, 2, 1, 6, 2, 1, 24, 9, 2, 1, 120, 44, 13, 2, 1, 720, 265, 80, 20, 2, 1, 5040, 1854, 579, 144, 31, 2, 1, 40320, 14833, 4738, 1265, 264, 49, 2, 1, 362880, 133496, 43387, 12072, 2783, 484, 78, 2, 1, 3628800, 1334961, 439792, 126565, 30818, 6208, 888, 125, 2, 1
Offset: 1
Table begins:
1
2, 1
6, 2, 1
24, 9, 2, 1
120, 44, 13, 2, 1
720, 265, 80, 20, 2, 1
5040, 1854, 579, 144, 31, 2, 1
40320, 14833, 4738, 1265, 264, 49, 2, 1
362880, 133496, 43387, 12072, 2783, 484, 78, 2, 1
A048162
Expansion of (1 - x + 3*x^3 - 2*x^4 - 3*x^5)/(1 - 2*x + x^3).
Original entry on oeis.org
1, 1, 2, 6, 9, 13, 20, 31, 49, 78, 125, 201, 324, 523, 845, 1366, 2209, 3573, 5780, 9351, 15129, 24478, 39605, 64081, 103684, 167763, 271445, 439206, 710649, 1149853, 1860500, 3010351, 4870849, 7881198, 12752045, 20633241, 33385284
Offset: 0
- Lehmer, D. H.; Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
-
CoefficientList[Series[(1-x+3x^3-2x^4-3x^5)/(1-2x+x^3),{x,0,40}],x] (* or *) Join[{1,1,2},#[[3]]+#[[1]]+2&/@Partition[Fibonacci[Range[2,50]],3,1]] (* Harvey P. Dale, Apr 06 2017 *)
A345461
Triangle T(n,k) (n >= 1, 0 <= k <= n-1) read by rows: number of distinct permutations after k steps of the "optimist" algorithm.
Original entry on oeis.org
1, 2, 1, 6, 1, 1, 24, 6, 1, 1, 120, 38, 7, 1, 1, 720, 232, 53, 7, 1, 1, 5040, 1607, 404, 74, 7, 1, 1, 40320, 12984, 3383, 732, 108, 7, 1, 1, 362880, 117513, 31572, 7043, 1292, 167, 9, 1, 1, 3628800, 1182540, 324112, 75350, 14522, 2384, 260, 11, 1, 1
Offset: 1
Triangle begins:
.
1;
2, 1;
6, 1, 1;
24, 6, 1, 1;
120, 38, 7, 1, 1;
720, 232, 53, 7, 1, 1;
5040, 1607, 404, 74, 7, 1, 1;
.
Cf.
A345453 (permutations according to number of steps for sorting).
Cf.
A345462 (the equivalent for Stirling numbers of 1st kind).
A306738
Number of permutations of [n] allowing i->i+j (mod n), j=0..ceiling(n/2)-1.
Original entry on oeis.org
1, 1, 1, 2, 2, 13, 20, 144, 264, 2783, 6208, 79118, 204448, 3182225, 9411840, 170576156, 566725760, 11804363619, 43573050368, 1023207993178, 4152609019392, 108681408827381, 481065936784384, 13880706183899752
Offset: 0
Comments