cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A349115 a(n) = 8^n * P(n, 3*n), where P(n, x) is n-th Legendre polynomial.

Original entry on oeis.org

1, 24, 3424, 926208, 369378816, 194988441600, 128184980586496, 100904418485993472, 92542260511611682816, 96909547417109671182336, 114095278582299648325582848, 149184455262733048487847395328, 214496285274348399077675463868416, 336346643957900669242934177071890432
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 08 2021

Keywords

Comments

In general, for k>=1, P(n, k*n) ~ 2^n * k^n * n^(n - 1/2) / sqrt(Pi).

Crossrefs

Programs

  • Mathematica
    Table[8^n*LegendreP[n, 3*n], {n, 0, 15}]
  • PARI
    a(n) = 8^n*pollegendre(n, 3*n); \\ Michel Marcus, Nov 08 2021

Formula

a(n) ~ 2^(4*n) * 3^n * n^(n - 1/2) / sqrt(Pi).

A330203 Composite numbers k such that D(k) == 3 (mod k), where D(k) is the k-th central Delannoy number (A001850).

Original entry on oeis.org

10, 15, 50, 370, 2418, 4371, 5341, 8430, 20535, 25338, 26958, 278674, 1194649, 4304445, 11984885, 12327121, 20746461, 27585010, 72363853, 79501818
Offset: 1

Views

Author

Amiram Eldar, Dec 05 2019

Keywords

Comments

Equivalently, composite numbers k such that P(k, 3) == 3 (mod k), where P(k, 3) = D(k) is the k-th Legendre polynomial evaluated at 3.
P(p, 3) == 3 (mod p) for all primes p. This is a special case of Schur congruences, named after Issai Schur, first published by his student Hildegard Ille in her Ph.D. thesis in 1924, and proven by Wahab in 1952. This sequence consists of the composite numbers for which the congruence holds.

Examples

			10 is in the sequence since it is composite and D(10) = 8097453 == 3 (mod 10).
		

References

  • Hildegard Ille, Zur Irreduzibilität der Kugelfunktionen, Jahrbuch der Dissertationen der Universität Berlin, (1924).
  • Peter S. Landweber, Elliptic Curves and Modular Forms in Algebraic Topology: Proceedings of a Conference held at the Institute for Advanced Study, Princeton, Sept. 15-17, 1986, Springer, 2006. See pp. 74-76.

Crossrefs

Programs

  • Mathematica
    Select[Range[2500], CompositeQ[#] && Divisible[LegendreP[#, 3] - 3, #] &]
  • Sage
    a, b = 1, 1
    for n in range(1, 10000):
        a, b = b, ((6*n-3)*b - (n-1)*a)//n
        if (b%n == 3) and (not Integer(n).is_prime()): print(n)  # Robin Visser, Aug 08 2023

Extensions

a(18) from Robin Visser, Aug 08 2023
a(19)-a(20) from Robin Visser, Sep 11 2023

A349113 a(n) = 8^n * P(3*n, n), where P(n, x) is n-th Legendre polynomial.

Original entry on oeis.org

1, 8, 40636, 748832256, 37759888297756, 4086692369433395200, 815254385427670754825764, 270587150855247020644760551424, 138859707622050969870951620062449436, 104286590422721059977069662227099300134912, 109828573459404650800550127862919905133973562480
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 08 2021

Keywords

Comments

In general, for k>=1, P(k*n, n) ~ 2^(k*n) * n^(k*n) / sqrt(k*Pi*n).

Crossrefs

Programs

  • Mathematica
    Table[8^n*LegendreP[3*n, n], {n, 0, 12}]
  • PARI
    a(n) = 8^n*pollegendre(3*n, n); \\ Michel Marcus, Nov 08 2021

Formula

a(n) ~ 2^(6*n) * n^(3*n - 1/2) / sqrt(3*Pi).

A349114 a(n) = 4^n * P(n, 2*n), where P(n, x) is n-th Legendre polynomial.

Original entry on oeis.org

1, 8, 376, 33984, 4526176, 797459200, 174910868224, 45926958135296, 14047764722238976, 4905641267399503872, 1925859774286175997952, 839619968812285810868224, 402496047174560754869846016, 210424519428145503482634174464, 119148510992477432889126160826368
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[4^n*LegendreP[n, 2*n], {n, 0, 16}]
  • PARI
    a(n) = 4^n*pollegendre(n, 2*n); \\ Michel Marcus, Nov 08 2021

Formula

a(n) ~ 2^(4*n) * n^(n - 1/2) / sqrt(Pi).

A171484 Beukers integral int(int( -log(x*y) / (1-x*y) * P_n(2*x-1) * P_n(2*y-1) ,x=0..1,y=0..1)) = (A(n) + B(n)*zeta(3)) / A003418(n)^3. This sequence gives negated values of A(n).

Original entry on oeis.org

0, 12, 1404, 750372, 137096340, 425299945236, 11144361386340, 104074481089949004, 23323094579273069340, 18031967628526215059268, 525443267415363230379732, 20671296686851400981142679500
Offset: 0

Views

Author

Max Alekseyev, Dec 09 2009

Keywords

Comments

Values of B(n) are given in A171485. P_n(x) are the Legendre Polynomials (see A008316) defined by n!*P_n(x) = (d/dx)^n (x^n*(1-x)^n).

Crossrefs

Cf. A104684.

A171485 Beukers integral Integral_{y = 0..1} Integral_{x = 0..1} -log(x*y) / (1-x*y) * P_n(2*x-1) * P_n(2*y-1) dx dy = (A(n) + B(n)*zeta(3)) / A003418(n)^3. This sequence gives the values of B(n).

Original entry on oeis.org

2, 10, 1168, 624240, 114051456, 353810160000, 9271076400000, 86580328116240000, 19402654331894400000, 15000926812307614080000, 437120128035736887168000, 17196604114594832318160000000, 514325437537328572480262784000, 34134351456507030556755674947200000
Offset: 0

Views

Author

Max Alekseyev, Dec 09 2009

Keywords

Comments

Values of A(n) are given in A171484. P_n(x) are the Legendre Polynomials defined by n!*P_n(x) = (d/dx)^n (x^n*(1-x)^n), see A008316.

Crossrefs

Programs

  • Maple
    seq( 2 * lcm(seq(i, i = 1..n))^3 * add(binomial(n,k)^2*binomial(n+k,k)^2, k = 0..n), n = 0..20); # Peter Bala, Aug 01 2025
  • Mathematica
    Join[{2}, Table[2*(LCM @@ Range[n])^3 * HypergeometricPFQ[{-n, -n, n + 1, n + 1}, {1, 1, 1}, 1], {n, 1, 20}]] (* Vaclav Kotesovec, Aug 02 2025 *)

Formula

a(n) = 2 * A003418(n)^3 * A005259(n). - Peter Bala, Aug 01 2025

A330204 Composite numbers k such that P(k, 5) == 5 (mod k), where P(k, 5) = A006442(k) is the k-th Legendre polynomial evaluated at 5.

Original entry on oeis.org

4, 15, 35, 165, 255, 615, 1815, 1876, 2636, 2948, 5380, 5565, 11235, 28545, 288380, 903644, 1807995, 2486165, 2674060, 10538572, 11791595, 14145121, 28558415, 45153277, 45682751
Offset: 1

Views

Author

Amiram Eldar, Dec 05 2019

Keywords

Comments

P(p, 5) == 5 (mod p) for all primes p. This is a special case of Schur congruences (see A330203 for references). This sequence consists of the composite numbers for which the congruence holds.

Examples

			4 is in the sequence since it is composite and P(4, 5) = 2641 == 5 (mod 4).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3000], CompositeQ[#] && Divisible[LegendreP[#, 5] - 5, #] &]
  • PARI
    isok(k) = Mod(subst(pollegendre(k), x, 5), k) == 5;
    forcomposite (k=1, 10000, if (isok(k), print1(k, ", "))); \\ Michel Marcus, Dec 06 2019
    
  • Sage
    a, b = 1, 5
    for n in range(2, 10000):
        a, b = b, ((10*n-5)*b - (n-1)*a)//n
        if (b%n == 5%n) and (not Integer(n).is_prime()): print(n)  # Robin Visser, Aug 17 2023

Extensions

a(22)-a(23) from Robin Visser, Aug 17 2023
a(24)-a(25) from Robin Visser, Sep 11 2023

A330205 Composite numbers k such that P(k, 7) == 7 (mod k), where P(k, 7) = A084768(k) is the k-th Legendre polynomial evaluated at 7.

Original entry on oeis.org

6, 15, 21, 22, 105, 119, 231, 426, 483, 1290, 1939, 4429, 4450, 4578, 10609, 12999, 14118, 16899, 23262, 26733, 37401, 39858, 82194, 108345, 121335, 127434, 302253, 380757, 724647, 836437, 840147, 1078270, 1522677, 2007411, 15009050, 28913991
Offset: 1

Views

Author

Amiram Eldar, Dec 05 2019

Keywords

Comments

P(p, 7) == 7 (mod p) for all primes p. This is a special case of Schur congruences (see A330203 for references). This sequence consists of the composite numbers for which the congruence holds.

Examples

			6 is in the sequence since it is composite and P(6, 7) = 1651609 == 7 (mod 6).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2000], CompositeQ[#] && Divisible[LegendreP[#, 7] - 7, #] &]
  • PARI
    isok(k) = Mod(subst(pollegendre(k), x, 7), k) == 7;
    forcomposite (k=1, 10000, if (isok(k), print1(k, ", "))); \\ Michel Marcus, Dec 06 2019
    
  • Sage
    a, b = 1, 7
    for n in range(2, 10000):
        a, b = b, ((14*n-7)*b - (n-1)*a)//n
        if (b%n == 7%n) and (not Integer(n).is_prime()): print(n)  # Robin Visser, Aug 18 2023

Extensions

a(35)-a(36) from Robin Visser, Aug 18 2023
Previous Showing 21-28 of 28 results.