A349115
a(n) = 8^n * P(n, 3*n), where P(n, x) is n-th Legendre polynomial.
Original entry on oeis.org
1, 24, 3424, 926208, 369378816, 194988441600, 128184980586496, 100904418485993472, 92542260511611682816, 96909547417109671182336, 114095278582299648325582848, 149184455262733048487847395328, 214496285274348399077675463868416, 336346643957900669242934177071890432
Offset: 0
-
Table[8^n*LegendreP[n, 3*n], {n, 0, 15}]
-
a(n) = 8^n*pollegendre(n, 3*n); \\ Michel Marcus, Nov 08 2021
A330203
Composite numbers k such that D(k) == 3 (mod k), where D(k) is the k-th central Delannoy number (A001850).
Original entry on oeis.org
10, 15, 50, 370, 2418, 4371, 5341, 8430, 20535, 25338, 26958, 278674, 1194649, 4304445, 11984885, 12327121, 20746461, 27585010, 72363853, 79501818
Offset: 1
10 is in the sequence since it is composite and D(10) = 8097453 == 3 (mod 10).
- Hildegard Ille, Zur Irreduzibilität der Kugelfunktionen, Jahrbuch der Dissertationen der Universität Berlin, (1924).
- Peter S. Landweber, Elliptic Curves and Modular Forms in Algebraic Topology: Proceedings of a Conference held at the Institute for Advanced Study, Princeton, Sept. 15-17, 1986, Springer, 2006. See pp. 74-76.
- Jean-Paul Allouche and Guentcho Skordev, Schur congruences, Carlitz sequences of polynomials and automaticity, Discrete Mathematics, Vol 214 (2000), pp. 21-49.
- S. K. Chatterjea, On Congruence Properties of Legendre Polynomials, Mathematics Magazine, Vol. 34, No. 6 (1961), pp. 329-336.
- Sen-Peng Eu, Shu-Chung Liu, and Yeong-Nan Yeh, On the Congruences of Some Combinatorial Numbers, Studies in Applied Mathematics, Vol. 116, No. 2 (2006), pp. 135-144.
- J. H. Wahab, New cases of irreducibility for Legendre polynomials, Duke Mathematical Journal, Vol. 19 (1952), pp. 165-176.
-
Select[Range[2500], CompositeQ[#] && Divisible[LegendreP[#, 3] - 3, #] &]
-
a, b = 1, 1
for n in range(1, 10000):
a, b = b, ((6*n-3)*b - (n-1)*a)//n
if (b%n == 3) and (not Integer(n).is_prime()): print(n) # Robin Visser, Aug 08 2023
A349113
a(n) = 8^n * P(3*n, n), where P(n, x) is n-th Legendre polynomial.
Original entry on oeis.org
1, 8, 40636, 748832256, 37759888297756, 4086692369433395200, 815254385427670754825764, 270587150855247020644760551424, 138859707622050969870951620062449436, 104286590422721059977069662227099300134912, 109828573459404650800550127862919905133973562480
Offset: 0
-
Table[8^n*LegendreP[3*n, n], {n, 0, 12}]
-
a(n) = 8^n*pollegendre(3*n, n); \\ Michel Marcus, Nov 08 2021
A349114
a(n) = 4^n * P(n, 2*n), where P(n, x) is n-th Legendre polynomial.
Original entry on oeis.org
1, 8, 376, 33984, 4526176, 797459200, 174910868224, 45926958135296, 14047764722238976, 4905641267399503872, 1925859774286175997952, 839619968812285810868224, 402496047174560754869846016, 210424519428145503482634174464, 119148510992477432889126160826368
Offset: 0
-
Table[4^n*LegendreP[n, 2*n], {n, 0, 16}]
-
a(n) = 4^n*pollegendre(n, 2*n); \\ Michel Marcus, Nov 08 2021
A171484
Beukers integral int(int( -log(x*y) / (1-x*y) * P_n(2*x-1) * P_n(2*y-1) ,x=0..1,y=0..1)) = (A(n) + B(n)*zeta(3)) / A003418(n)^3. This sequence gives negated values of A(n).
Original entry on oeis.org
0, 12, 1404, 750372, 137096340, 425299945236, 11144361386340, 104074481089949004, 23323094579273069340, 18031967628526215059268, 525443267415363230379732, 20671296686851400981142679500
Offset: 0
A171485
Beukers integral Integral_{y = 0..1} Integral_{x = 0..1} -log(x*y) / (1-x*y) * P_n(2*x-1) * P_n(2*y-1) dx dy = (A(n) + B(n)*zeta(3)) / A003418(n)^3. This sequence gives the values of B(n).
Original entry on oeis.org
2, 10, 1168, 624240, 114051456, 353810160000, 9271076400000, 86580328116240000, 19402654331894400000, 15000926812307614080000, 437120128035736887168000, 17196604114594832318160000000, 514325437537328572480262784000, 34134351456507030556755674947200000
Offset: 0
-
seq( 2 * lcm(seq(i, i = 1..n))^3 * add(binomial(n,k)^2*binomial(n+k,k)^2, k = 0..n), n = 0..20); # Peter Bala, Aug 01 2025
-
Join[{2}, Table[2*(LCM @@ Range[n])^3 * HypergeometricPFQ[{-n, -n, n + 1, n + 1}, {1, 1, 1}, 1], {n, 1, 20}]] (* Vaclav Kotesovec, Aug 02 2025 *)
A330204
Composite numbers k such that P(k, 5) == 5 (mod k), where P(k, 5) = A006442(k) is the k-th Legendre polynomial evaluated at 5.
Original entry on oeis.org
4, 15, 35, 165, 255, 615, 1815, 1876, 2636, 2948, 5380, 5565, 11235, 28545, 288380, 903644, 1807995, 2486165, 2674060, 10538572, 11791595, 14145121, 28558415, 45153277, 45682751
Offset: 1
4 is in the sequence since it is composite and P(4, 5) = 2641 == 5 (mod 4).
-
Select[Range[3000], CompositeQ[#] && Divisible[LegendreP[#, 5] - 5, #] &]
-
isok(k) = Mod(subst(pollegendre(k), x, 5), k) == 5;
forcomposite (k=1, 10000, if (isok(k), print1(k, ", "))); \\ Michel Marcus, Dec 06 2019
-
a, b = 1, 5
for n in range(2, 10000):
a, b = b, ((10*n-5)*b - (n-1)*a)//n
if (b%n == 5%n) and (not Integer(n).is_prime()): print(n) # Robin Visser, Aug 17 2023
A330205
Composite numbers k such that P(k, 7) == 7 (mod k), where P(k, 7) = A084768(k) is the k-th Legendre polynomial evaluated at 7.
Original entry on oeis.org
6, 15, 21, 22, 105, 119, 231, 426, 483, 1290, 1939, 4429, 4450, 4578, 10609, 12999, 14118, 16899, 23262, 26733, 37401, 39858, 82194, 108345, 121335, 127434, 302253, 380757, 724647, 836437, 840147, 1078270, 1522677, 2007411, 15009050, 28913991
Offset: 1
6 is in the sequence since it is composite and P(6, 7) = 1651609 == 7 (mod 6).
-
Select[Range[2000], CompositeQ[#] && Divisible[LegendreP[#, 7] - 7, #] &]
-
isok(k) = Mod(subst(pollegendre(k), x, 7), k) == 7;
forcomposite (k=1, 10000, if (isok(k), print1(k, ", "))); \\ Michel Marcus, Dec 06 2019
-
a, b = 1, 7
for n in range(2, 10000):
a, b = b, ((14*n-7)*b - (n-1)*a)//n
if (b%n == 7%n) and (not Integer(n).is_prime()): print(n) # Robin Visser, Aug 18 2023
Comments