cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A145339 a(n) = the minimum of d(p(n)-1) and d(p(n)+1), where d(m) is the number of divisors of m and p(n) is the n-th prime.

Original entry on oeis.org

1, 2, 3, 4, 4, 4, 5, 6, 4, 6, 6, 4, 8, 6, 4, 6, 4, 4, 6, 8, 4, 8, 4, 8, 6, 8, 8, 4, 8, 8, 8, 8, 8, 8, 6, 8, 4, 6, 4, 6, 4, 8, 8, 4, 9, 12, 6, 8, 4, 8, 8, 8, 6, 8, 8, 4, 6, 10, 4, 8, 6, 6, 12, 8, 4, 6, 6, 6, 4, 12, 8, 4, 8, 8, 12, 4, 6, 4, 8, 8, 8, 4, 8, 8, 8, 8, 14, 4, 12, 10, 4, 4, 8, 12, 8, 4, 6, 12, 6, 4, 6
Offset: 1

Views

Author

Leroy Quet, Oct 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Min[DivisorSigma[0, Prime[n]-1], DivisorSigma[0, Prime[n]+1]], {n, 1, 100}] (* Stefan Steinerberger, Oct 11 2008 *)
  • PARI
    a(n) = my(p = prime(n)); min(numdiv(p-1), numdiv(p+1)); \\ Michel Marcus, Sep 28 2018

Extensions

More terms from Stefan Steinerberger and Ray Chandler, Oct 11 2008

A189977 Primes p such that d(p+1) = 2*d(p-1), where d(k) counts the divisors of k.

Original entry on oeis.org

2, 23, 149, 293, 311, 439, 557, 569, 743, 773, 857, 1031, 1151, 1493, 1607, 1663, 1709, 1733, 1879, 1913, 2069, 2141, 2423, 2711, 2719, 2729, 2789, 2969, 3191, 3209, 3559, 3607, 3767, 3821, 3833, 3847, 3929, 3967, 4019, 4073, 4229, 4339, 4451, 4517, 4549
Offset: 1

Views

Author

Ctibor O. Zizka, May 03 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[PrimePi[5059]]], 2*DivisorSigma[0, # - 1] == DivisorSigma[0, # + 1] &] (* T. D. Noe, May 03 2011 *)
  • PARI
    isok(p) = isprime(p) && (numdiv(p+1) == 2*numdiv(p-1)); \\ Michel Marcus, Jan 13 2018

A386921 Numerators of the partial sums of 1/d(prime(k)+1), where d is the number of divisors function.

Original entry on oeis.org

1, 5, 13, 4, 3, 7, 23, 25, 53, 7, 5, 11, 23, 73, 377, 49, 67, 18, 113, 77, 41, 21, 257, 131, 68, 559, 287, 73, 599, 307, 629, 213, 109, 83, 337, 689, 719, 739, 1493, 1523, 4609, 4699, 33253, 34513, 34933, 35353, 36193, 36613, 37033, 37663, 38083, 7667, 7835, 7891
Offset: 1

Views

Author

Amiram Eldar, Aug 08 2025

Keywords

Examples

			Fractions begin with 1/2, 5/6, 13/12, 4/3, 3/2, 7/4, 23/12, 25/12, 53/24, 7/3, 5/2, 11/4, ...
		

Crossrefs

Cf. A000005, A008329, A008864, A104528, A386922 (denominators).

Programs

  • Mathematica
    Numerator[Accumulate[1/DivisorSigma[0, Prime[Range[100]] + 1]]]
  • PARI
    list(lim) = {my(s = 0); forprime(p = 1, lim, s += (1/numdiv(p+1)); print1(numerator(s), ", "));}

Formula

a(n) = numerator(Sum_{k=1..n} 1/A008329(k)).
a(n)/A386922(n) <= 4 * K * n/log(n)^(3/2) + O(n*log(log(n))/log(n)^(5/2)), where K = (1/sqrt(Pi)) * Product_{p prime} sqrt(p/(p-1)) * (p * log(p/(p-1)) - 1/(p-1)) = 0.25320111501639846923... (Iudelevich, 2022). Gabdullin et al. (2023) conjectured that a(n)/A386922(n) ~ K * n/log(n)^(3/2).

A386922 Denominators of the partial sums of 1/d(prime(k)+1), where d is the number of divisors function.

Original entry on oeis.org

2, 6, 12, 3, 2, 4, 12, 12, 24, 3, 2, 4, 8, 24, 120, 15, 20, 5, 30, 20, 10, 5, 60, 30, 15, 120, 60, 15, 120, 60, 120, 40, 20, 15, 60, 120, 120, 120, 240, 240, 720, 720, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 1008, 1008, 1008, 1008, 63, 1008, 5040, 5040
Offset: 1

Views

Author

Amiram Eldar, Aug 08 2025

Keywords

Examples

			Fractions begin with 1/2, 5/6, 13/12, 4/3, 3/2, 7/4, 23/12, 25/12, 53/24, 7/3, 5/2, 11/4, ...
		

Crossrefs

Cf. A000005, A008329, A008864, A104529, A386921 (numerators).

Programs

  • Mathematica
    Denominator[Accumulate[1/DivisorSigma[0, Prime[Range[100]] + 1]]]
  • PARI
    list(lim) = {my(s = 0); forprime(p = 1, lim, s += (1/numdiv(p+1)); print1(denominator(s), ", "));}

Formula

a(n) = denominator(Sum_{k=1..n} 1/A008329(k)).

A068356 Numbers k such that bigomega(k) = tau(prime(k)+1) where tau(k) = A000005(k).

Original entry on oeis.org

88, 100, 198, 260, 306, 375, 384, 459, 540, 585, 714, 798, 825, 856, 864, 960, 1012, 1062, 1148, 1278, 1312, 1484, 1725, 1784, 1924, 1988, 2125, 2130, 2160, 2204, 2210, 2240, 2241, 2250, 2346, 2480, 2516, 2619, 2662, 2776, 2814, 2826, 2889, 2892, 2910
Offset: 1

Views

Author

Benoit Cloitre, Feb 28 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[3000],PrimeOmega[#]==DivisorSigma[0,Prime[#]+1]&] (* Harvey P. Dale, Aug 18 2013 *)
  • PARI
    isok(k) = bigomega(k) == numdiv(prime(k)+1); \\ Michel Marcus, May 10 2022

A145340 a(n) = the maximum of d(p(n)-1) and d(p(n)+1), where d(m) is the number of divisors of m and p(n) is the n-th prime.

Original entry on oeis.org

2, 3, 4, 4, 6, 6, 6, 6, 8, 8, 8, 9, 8, 8, 10, 8, 12, 12, 8, 12, 12, 10, 12, 12, 12, 9, 8, 12, 12, 10, 12, 12, 8, 12, 12, 12, 12, 10, 16, 8, 18, 18, 14, 14, 12, 12, 16, 12, 12, 12, 12, 20, 20, 18, 9, 16, 16, 16, 12, 16, 8, 12, 12, 16, 16, 8, 16, 20, 12, 12, 12, 24, 10, 12, 16, 16, 16
Offset: 1

Views

Author

Leroy Quet, Oct 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[DivisorSigma[0, Prime[n]-1], DivisorSigma[0, Prime[n]+1]], {n, 1, 100}] (* Stefan Steinerberger, Oct 11 2008 *)

Extensions

More terms from Stefan Steinerberger and Ray Chandler, Oct 11 2008
Previous Showing 11-16 of 16 results.