cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 416 results. Next

A063996 Numbers k such that ud(k) = sopf(k)-1, where ud(k)=A034444(k) and sopf(k)=A008472(k).

Original entry on oeis.org

3, 6, 9, 12, 18, 24, 27, 36, 48, 54, 72, 81, 96, 108, 144, 162, 192, 210, 216, 243, 288, 324, 384, 420, 432, 486, 576, 630, 648, 729, 768, 840, 864, 972, 1050, 1152, 1260, 1296, 1458, 1470, 1536, 1680, 1728, 1890, 1944, 2100, 2187, 2304, 2520, 2592, 2916
Offset: 1

Views

Author

Jason Earls, Sep 06 2001

Keywords

Crossrefs

Programs

  • PARI
    sopf(n,s,fac,i)=fac=factor(n); for(i=1,matsize(fac)[1], s=s+fac[i,1]); return(s); ud(n) = 2^omega(n); j=[]; for(n=1,7000, if(ud(n)==sopf(n)-1, j=concat(j,n))); j
    
  • PARI
    sopf(n)= { local(f,s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) } { n=0; for (m=1, 10^9, if (2^omega(m)==sopf(m) - 1, write("b063996.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 05 2009

A064019 Numbers k such that sopf(k) = sopf(k^2 - 1), where sopf(k) = A008472(k).

Original entry on oeis.org

1, 5, 51, 99, 155, 209, 2369, 2569, 2882, 5745, 15143, 21691, 34573, 36566, 40516, 41237, 65304, 82718, 101638, 112305, 185701, 238302, 247221, 254865, 291399, 439104, 445794, 483107, 532645, 538531, 570020, 690238, 698561, 772485, 805013
Offset: 1

Views

Author

Jason Earls, Sep 07 2001

Keywords

Programs

  • PARI
    sopf(n,s,fac,i)=fac=factor(n); for(i=1,matsize(fac)[1],s=s+fac[i,1]); return(s);
    for(n=1,10^6, if(sopf(n)==sopf(n^2-1),print(n)))
    
  • PARI
    sopf(n)= { local(f,s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) }
    { n=0; for (m=1, 10^9, if (sopf(m)==sopf(m^2 - 1), write("b064019.txt", n++, " ", m); if (n==100, break)) ) } \\ Harry J. Smith, Sep 06 2009

Extensions

a(21)-a(35) from Donovan Johnson, Jun 15 2009

A065132 Arithmetic mean of first n terms of A008472 is an integer.

Original entry on oeis.org

2, 13, 134, 167, 2239, 62268, 75255, 135681, 439867, 18139940, 23671044, 40892256, 312083956, 724031017, 1990127567, 2144843867, 2588619526, 7439533243, 15054156002, 54892225873, 69959798320, 79760490898, 282311798922
Offset: 1

Views

Author

Labos Elemer, Oct 15 2001

Keywords

Examples

			Sum of first 13 terms of A008472 gives A024924(13) = 65 which is divisible by n = 13, so 13 is here: 0+2+3+2+5+5+7+2+3+7+11+5+13 = 65 = 13*5 = A024924(13).
		

Crossrefs

Programs

  • Mathematica
    s=0; Do[s=s+sp[n]; If[IntegerQ[n/25000], Print[n]]; If[IntegerQ[s/n], Print[{n, s, s/n}]], {n, 2, 4000000}] where sp[n]=A008472(n).

Formula

Integers n that divide A024924(n)=A008472(1)+A008472(2)+...+A008472(n).
Also, integers n that divide A024934(n).
Prime terms are listed in A143851.

Extensions

a(10)-a(19) from Donovan Johnson, Nov 22 2009
a(20)-a(23) from Donovan Johnson, Aug 31 2010

A075658 Numbers k such that the sum of prime divisors of k (A008472) is composite.

Original entry on oeis.org

14, 15, 21, 26, 28, 30, 33, 35, 38, 39, 42, 45, 46, 51, 52, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 74, 75, 76, 77, 78, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 98, 99, 102, 104, 105, 106, 110, 111, 112, 114, 115, 117, 119, 120, 122, 123, 124, 126, 129, 130, 132, 133
Offset: 1

Views

Author

Floor van Lamoen, Sep 23 2002 and Oct 02 2002

Keywords

Crossrefs

Cf. A008472.

Programs

  • Magma
    f:=func; [k:k in [2..150]| not IsPrime(f(k))]; // Marius A. Burtea, Nov 14 2019
  • Maple
    A075658 := proc(n) local i,j,t1,t; t := NULL; for i from 2 to n do t1 := 0; for j from 1 to i do if i mod ithprime(j) = 0 then t1 := t1+ithprime(j); fi; od; if not(isprime(t1)) then t := t,i; fi; od; t; end;
  • Mathematica
    Select[Range[133], CompositeQ[Plus @@ FactorInteger[#][[;;,1]]] &] (* Amiram Eldar, Nov 14 2019 *)

Extensions

Offset corrected by Amiram Eldar, Nov 14 2019

A161606 a(n) = gcd(A008472(n), A001222(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 5, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 1, 4, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Leroy Quet, Jun 14 2009

Keywords

Examples

			28 has a prime-factorization of: 2^2 * 7^1. The sum of the distinct primes dividing 28 is 2+7 = 9. The sum of the exponents in the prime-factorization of 28 is 2+1 = 3. a(28) therefore equals gcd(9,3) = 3.
		

Crossrefs

Programs

  • Maple
    A008472 := proc(n) if n = 1 then 0 ; else add(p, p= numtheory[factorset](n)) ; end if ; end proc:
    A161606 := proc(n) igcd(A008472(n),numtheory[bigomega](n)) ; end proc:
    seq(A161606(n),n=2..80) ; # R. J. Mathar, Jul 08 2011
  • Mathematica
    Table[GCD[DivisorSum[n, # &, PrimeQ], PrimeOmega@ n], {n, 105}] (* Michael De Vlieger, Jul 20 2017 *)
  • Python
    from sympy import primefactors, gcd
    def a001222(n): return 0 if n==1 else a001222(n//primefactors(n)[-1]) + 1
    def a(n): return gcd(sum(primefactors(n)), a001222(n))
    print([a(n) for n in range(1, 151)]) # Indranil Ghosh, Jul 20 2017
  • Scheme
    (define (A161606 n) (gcd (A001222 n) (A008472 n))) ;; Antti Karttunen, Jul 20 2017
    

Extensions

Term a(1)=0 prepended and more terms computed by Antti Karttunen, Jul 20 2017

A190722 Primes p such that A008472(p-1) = A008472(p+1) and is a prime.

Original entry on oeis.org

3, 45751, 149351, 171529, 223099, 434237, 678077, 706841, 1996297, 3993037, 6340457, 7199113, 7419761, 9000317, 13129271, 15052777, 17193217, 18436879, 18749881, 18998519, 23353469, 23689423, 33746663, 40985411, 41437751, 43547797, 51198097, 53773651, 56825687, 60207809, 62190113, 79778899, 81708353, 83019421
Offset: 1

Views

Author

Robert G. Wilson v, May 17 2011

Keywords

Comments

A008472 is the sum of the distinct primes dividing n.

Examples

			For p = 45751, p-1 = 2*3*5^3*61; 2+3+5+61=71 and p+1 = 2^3*7*19*43; 2+7+19+43 = 71.
		

Crossrefs

Subsequence of A203182.

Programs

  • Magma
    [p:p in PrimesInInterval(3,10^8)|(&+PrimeDivisors(p-1) eq &+PrimeDivisors(p+1)) and IsPrime(&+PrimeDivisors(p-1))]; // Marius A. Burtea, Nov 14 2019
  • Mathematica
    fQ[n_] := Block[{pn = Plus @@ (First@# & /@ FactorInteger[n - 1]), pp = Plus@@ (First@# & /@ FactorInteger[n + 1])}, pn == pp && PrimeQ[pn]];
    p = 2; lst = {}; While[p < 10^8, If[fQ@p, AppendTo[lst, p]; Print@p]; p =
    NextPrime@p]; lst
    pQ[n_]:=Module[{p1=Total[FactorInteger[n-1][[All,1]]],p2=Total[ FactorInteger[ n+1][[All,1]]]},p1==p2&&PrimeQ[p1]]; Select[ Prime[ Range[5*10^6]],pQ] (* Harvey P. Dale, Jun 18 2017 *)

A203182 Primes p such that A008472(p-1) = A008472(p+1), where A008472 = sum of distinct primes dividing n.

Original entry on oeis.org

3, 18913, 24733, 29633, 32429, 42719, 45751, 46103, 61409, 117991, 149351, 171529, 174019, 176017, 223099, 294893, 326369, 363691, 421727, 423503, 434237, 472631, 658579, 678077, 686423, 706841, 735901, 770059, 771629, 906949, 936827, 937571, 1073447, 1256029
Offset: 1

Views

Author

Michel Lagneau, Dec 30 2011

Keywords

Comments

Conjecture: the sequence is infinite.

Examples

			18913 is in the sequence because:
sum of the distinct prime divisors of 18912 = 2+3+197 = 202;
sum of the distinct prime divisors of 18914 = 2+7+193 = 202.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 100000 do:p:=ithprime(n):p1:=p-1: p2:=p+1:t1:=ifactors(p1)[2]; t11 := sum(t1[i][1], i=1..nops(t1)):t2:=ifactors(p2)[2]; t22 := sum(t2[i][1], i=1..nops(t2)):if t11=t22 then printf(`%d, `,p):else fi:od:
  • Mathematica
    Select[Prime[Range[100000]],Total[Transpose[FactorInteger[#-1]][[1]]] == Total[Transpose[FactorInteger[#+1]][[1]]]&] (* Harvey P. Dale, Sep 22 2013 *)

A275665 Numbers n such that n and sopf(n) are relatively prime, where sopf(n) (A008472) is the sum of the distinct primes dividing n.

Original entry on oeis.org

1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 104, 106, 108, 111, 112, 115, 116, 117, 118, 119, 122, 123, 124, 129, 133, 134, 135, 136, 141, 142, 143, 144, 145, 146, 147, 148, 152, 153, 155, 158, 159, 160, 161, 162, 164, 165
Offset: 1

Views

Author

Keywords

Comments

Hall shows that the density of this sequence is 6/Pi^2, so a(n) ~ (Pi^2/6)n.
Differs from A267114, from A030231, and from A007774 (shifted by one index) first at n=93. - R. J. Mathar, Aug 22 2016

Crossrefs

Programs

  • Mathematica
    Select[Range@ 165, CoprimeQ[#, Total@ FactorInteger[#][[All, 1]]] &] (* Michael De Vlieger, Aug 06 2016 *)
  • PARI
    sopf(n)=vecsum(factor(n)[,1])
    is(n)=gcd(sopf(n),n)==1

A336445 Integers m such that m/sopf(m) is a prime number where sopf(m) is A008472(m), the sum of the distinct primes dividing m.

Original entry on oeis.org

4, 9, 25, 30, 49, 70, 84, 105, 121, 169, 231, 234, 260, 286, 289, 361, 456, 529, 532, 627, 646, 805, 841, 897, 961, 1116, 1364, 1369, 1581, 1665, 1681, 1798, 1849, 1924, 2064, 2150, 2209, 2632, 2809, 2967, 3055, 3339, 3481, 3526, 3721, 4489, 4543, 4824, 5025, 5041
Offset: 1

Views

Author

Michel Marcus, Jul 22 2020

Keywords

Comments

All squares of primes (A001248) are terms.

Examples

			4 is a term since sopf(4)=2 and 4/2 = 2 is a prime.
30 is a term since sopf(30)=10 and 30/10 = 3 is a prime.
		

Crossrefs

Cf. A008472 (sopf).
Subsequence of A071139.
A001248 is a subsequence.

Programs

  • PARI
    sopf(n)=vecsum(factor(n)[, 1]); \\ A008472
    isokp(k) = my(q=k/sopf(k)); (denominator(q)==1) && isprime(q);

A362948 Numbers whose sum of (distinct) prime divisors (A008472) equals 5.

Original entry on oeis.org

5, 6, 12, 18, 24, 25, 36, 48, 54, 72, 96, 108, 125, 144, 162, 192, 216, 288, 324, 384, 432, 486, 576, 625, 648, 768, 864, 972, 1152, 1296, 1458, 1536, 1728, 1944, 2304, 2592, 2916, 3072, 3125, 3456, 3888, 4374, 4608, 5184, 5832, 6144, 6912, 7776, 8748, 9216, 10368, 11664, 12288
Offset: 1

Views

Author

M. F. Hasler, Jul 20 2023

Keywords

Crossrefs

Cf. A008472 (sopf), A000351 (5^n), A033845 (2^m*3^n).

Programs

  • Mathematica
    seq[max_] := Union[Join[5^Range[Floor[Log[5, max]]], Flatten@ Table[2^i*3^j, {i, 1, Log2[max]}, {j, 1, Log[3, max/2^i]}]]]; seq[13000] (* Amiram Eldar, Jul 27 2023 *)
  • PARI
    select( {is_A362948(n)=vecsum(factor(n,0)[,1])==5}, [1..11^4]) \\ alternatively: [n | n<-[1..11^4], A008472(n)==5]

Formula

Union of A000351 = {5^k ; k > 0} and A033845 = {2^j*3^k, j,k > 0}.
Sum_{n>=1} 1/a(n) = 3/4. - Amiram Eldar, Jul 27 2023
Previous Showing 31-40 of 416 results. Next