cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A252782 a(n) = n-th term of Euler transform of n-th powers.

Original entry on oeis.org

1, 1, 5, 36, 490, 12729, 689896, 70223666, 13803604854, 5567490203192, 4386006155453382, 6711625359213752077, 21048250447828058144403, 131214686495783317936950378, 1603891839732647136012816743764, 40296598014204065945778862754895836
Offset: 0

Views

Author

Alois P. Heinz, Dec 21 2014

Keywords

Crossrefs

Main diagonal of A144048.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, add(add(
           d*d^k, d=divisors(j))*A(n-j, k), j=1..n)/n)
        end:
    a:= n-> A(n$2):
    seq(a(n), n=0..20);
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-x^k)^(k^n),{k,1,n}],{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 01 2015 *)

Formula

a(n) = [x^n] Product_{j>=1} 1/(1-x^j)^(j^n).
Conjecture: limit n->infinity a(n)^(1/n^2) = exp(exp(-1)) = 1.444667861... . - Vaclav Kotesovec, Mar 25 2016

A380290 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} 1/(1 - x^k)^(k^2) is the g.f. of A023871.

Original entry on oeis.org

1, 1, 11, 73, 539, 3976, 30107, 229811, 1771803, 13749742, 107305836, 841211966, 6619647419, 52258136399, 413682035393, 3282569032273, 26101575743771, 207930807629248, 1659134361686186, 13258065574274885, 106084302933126364, 849845499077000534, 6815530442695480418, 54712839001004065090
Offset: 0

Views

Author

Peter Bala, Jan 19 2025

Keywords

Comments

Given an integer sequence {f(n) : n >= 0} with f(0) = 1, there is a unique power series F(x) with rational coefficients, where F(0) = 1, such that f(n) = [x^n] F(x)^n. F(x) is given by F(x) = series_reversion(x/E(x)), where E(x) = exp(Sum_{n >= 1} f(n)*x^n/n). Furthermore, if the series E(x) has integer coefficients then the series F(x) also has integer coefficients and the sequence {f(n)} satisfies the Gauss congruences: f(n*p^r) == f(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r (by Stanley, Ch. 5, Ex. 5.2(a), p. 72 and the Lagrange inversion formula).
Thus the present sequence satisfies the Gauss congruences. In fact, stronger congruences appear to hold for the present sequence.
We conjecture that a(p) == 1 (mod p^3) for all primes p >= 7 (checked up to p = 61).
More generally, we conjecture that the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for all primes p >= 7 and positive integers n and r. Some examples are given below.

Examples

			Examples of supercongruences:
a(7) - a(1) = 229811 - 1 = 2*5*(7^3)*67 == 0 (mod 7^3)
a(3*7) - a(3) = 849845499077000534 - 73 = (7^3)*29243*84727410689 == 0 (mod 7^3)
a(19) - a(1) = 13258065574274885 - 1 = (2^2)*11*(19^3)*29*26723*56687 == 0 (mod 19^3)
		

References

  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Programs

  • Maple
    with(numtheory):
    G(x) := series(exp(add(sigma[3](k)*x^k/k, k = 1..23)),x,24):
    seq(coeftayl(G(x)^n, x = 0, n), n = 0..23);
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k)^(n*k^2), {k, 1, n}], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
    (* or *)
    Table[SeriesCoefficient[Exp[n*Sum[DivisorSigma[3, k]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)

Formula

a(n) = [x^n] exp(n*Sum_{k >= 1} sigma_3(k)*x^k/k).
a(n) ~ c * d^n / sqrt(n), where d = 8.20432131153340331179513077696629277558952852444670658917204305357709... and c = 0.2513708881073263860977360125648021910598660424705749139651716452651... - Vaclav Kotesovec, Jul 30 2025

A300974 a(n) = [x^n] Product_{k>=1} 1/(1 - x^(k^2))^n.

Original entry on oeis.org

1, 1, 3, 10, 39, 151, 588, 2304, 9111, 36307, 145553, 586246, 2370264, 9614242, 39105580, 159444160, 651468967, 2666771488, 10934393619, 44899828056, 184616878289, 760010818689, 3132147583744, 12921037206764, 53351800567200, 220478125956426, 911839751015196, 3773836780169050
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 17 2018

Keywords

Comments

Number of partitions of n into squares of n kinds.

Crossrefs

Programs

  • Maple
    a:= proc(m) option remember; local b; b:= proc(n, i)
          option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(m+j-1, j)*b(n-i^2*j, i-1), j=0..n/i^2)))
          end: b(n, isqrt(n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 17 2018
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k^2)^n, {k, 1, n}], {x, 0, n}], {n, 0, 27}]

Formula

From Vaclav Kotesovec, Mar 23 2018: (Start)
a(n) ~ c * d^n / sqrt(n), where
d = 4.216358447600641565890184638418336163396695730036... and
c = 0.26442245016754864773722176155288663999776... (End)

A303070 a(n) = [x^n] (1/(1 - x))*Product_{k>=1} 1/(1 - x^k)^n.

Original entry on oeis.org

1, 2, 8, 35, 164, 787, 3857, 19147, 96004, 485009, 2465013, 12589315, 64555985, 332158127, 1714001409, 8866730665, 45968787524, 238778897128, 1242417984179, 6474394344503, 33784931507529, 176515163156311, 923265560495737, 4834081924982522, 25334170138318345, 132883719945537587
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 18 2018

Keywords

Crossrefs

Main diagonal of A210764.

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - x) Product[1/(1 - x^k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[1/(1 - x) Exp[n Sum[x^k/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 25}]

Formula

a(n) = [x^n] (1/(1 - x))*exp(n*Sum_{k>=1} x^k/(k*(1 - x^k))).
a(n) = A210764(n,n) = Sum_{j=0..n} A144064(j,n).
a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.352701333486642687772415814165... and c = 0.4068869940800214657298372785820... - Vaclav Kotesovec, May 19 2018

A304444 Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^(2*n).

Original entry on oeis.org

1, 2, 14, 98, 726, 5512, 42614, 333608, 2636326, 20985272, 168012824, 1351507830, 10914317934, 88432329546, 718545161208, 5852747363518, 47774241056710, 390702055798978, 3200542803221192, 26257321971526646, 215705170816632376, 1774181109262878848
Offset: 0

Views

Author

Vaclav Kotesovec, May 12 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; Table[SeriesCoefficient[Product[1/(1-x^k)^(2*n), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
    nmax = 25; Table[SeriesCoefficient[1/QPochhammer[x]^(2*n), {x, 0, n}], {n, 0, nmax}]
    (* Calculation of constants {d,c}: *) eq = FindRoot[{1/QPochhammer[r*s]^2 == s, 1/s + 2*r*Sqrt[s]*Derivative[0, 1][QPochhammer][r*s, r*s] == (2*(Log[1 - r*s] + QPolyGamma[0, 1, r*s]))/(s* Log[r*s])}, {r, 1/8}, {s, 2}, WorkingPrecision -> 1000]; {N[1/r /. eq, 120], val = Sqrt[((1 - r*s)*Log[r*s]^2)/(Pi*(16*r*s*ArcTanh[1 - 2*r*s] - (-1 + r*s)*(Log[r*s] - 2*Log[1 - r*s])*(3*Log[r*s] - 2*Log[1 - r*s]) - 8*Log[1 - r*s] - 8*(-1 + r*s)*(-1 + 2*ArcTanh[1 - 2*r*s])* QPolyGamma[0, 1, r*s] + (4 - 4*r*s)* QPolyGamma[0, 1, r*s]^2 + 4*(-1 + r*s)*(QPolyGamma[1, 1, r*s] + r*s*Log[r*s] * (r*s^(3/2)*Log[r*s]* Derivative[0, 2][QPochhammer][r*s, r*s] - 2*Derivative[0, 0, 1][QPolyGamma][0, 1, r*s]))))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)

Formula

a(n) ~ c * d^n / sqrt(n), where d = 8.42516721063251541777601555584151410936132980324698494327338254953123205... and c = 0.29923152009652750283923119244187982714171590056794904644563876...

A296163 a(n) = [x^n] Product_{k>=1} ((1 - x^(5*k))/(1 - x^k))^n.

Original entry on oeis.org

1, 1, 5, 22, 105, 501, 2456, 12160, 60801, 306130, 1550255, 7887034, 40281720, 206405967, 1060602800, 5463059772, 28199365873, 145832364580, 755420838614, 3918935839970, 20357605331355, 105878815699042, 551273881133750, 2873161931172668, 14988243880188600
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 06 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 - x^(5 k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 24}]
    Table[SeriesCoefficient[Product[(1 + x^k + x^(2 k) + x^(3 k) + x^(4 k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 24}]
    (* Calculation of constant d: *) With[{k = 5}, 1/r /. FindRoot[{s == QPochhammer[(r*s)^k] / QPochhammer[r*s], k*(-(s*QPochhammer[r*s]*(Log[1 - (r*s)^k] + QPolyGamma[0, 1, (r*s)^k]) / Log[(r*s)^k]) + (r*s)^k * Derivative[0, 1][QPochhammer][(r*s)^k, (r*s)^k]) == s*QPochhammer[r*s] + s^2*(-(QPochhammer[r*s]*(Log[1 - r*s] + QPolyGamma[0, 1, r*s]) / (s*Log[r*s])) + r*Derivative[0, 1][QPochhammer][r*s, r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)

Formula

a(n) = [x^n] Product_{k>=1} (1 + x^k + x^(2*k) + x^(3*k) + x^(4*k))^n.
a(n) ~ c * d^n / sqrt(n), where d = 5.3271035802753567624196808294779171420899175782347488197... and c = 0.2712048688090020853684153670711011713396954... - Vaclav Kotesovec, May 13 2018

A300975 a(n) = [x^n] Product_{k>=1} 1/(1 - x^(k^3))^n.

Original entry on oeis.org

1, 1, 3, 10, 35, 126, 462, 1716, 6443, 24391, 92928, 355862, 1368458, 5280744, 20438148, 79302960, 308385355, 1201536286, 4689450021, 18330233110, 71747534460, 281177705490, 1103163479190, 4332522733560, 17031238725410, 67007449610751, 263841039245280, 1039628691988795
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 17 2018

Keywords

Comments

Number of partitions of n into cubes of n kinds.

Crossrefs

Programs

  • Maple
    a:= proc(m) option remember; local b; b:= proc(n, i)
          option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(m+j-1, j)*b(n-i^3*j, i-1), j=0..n/i^3)))
          end: b(n, iroot(n, 3))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 17 2018
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k^3)^n, {k, 1, n}], {x, 0, n}], {n, 0, 27}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 4.0147940395164236614815683662796167488... and c = 0.2726202310726337579308600184572222... - Vaclav Kotesovec, Mar 23 2018

A304446 Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^(n^2).

Original entry on oeis.org

1, 1, 14, 255, 6460, 209405, 8287038, 387605491, 20930373880, 1281932464680, 87828985857380, 6656774777650459, 553068813860022264, 49988877225605011590, 4883606791114233989450, 512829418039842285746460, 57607740718731604241384432, 6893420862444517638234527039
Offset: 0

Views

Author

Vaclav Kotesovec, May 12 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[1/(1-x^k)^(n^2), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
    nmax = 20; Table[SeriesCoefficient[1/QPochhammer[x]^(n^2), {x, 0, n}], {n, 0, nmax}]

Formula

a(n) ~ exp(n + 3/2) * n^(n - 1/2) / sqrt(2*Pi).

A192435 Number of terms in n-th derivative of a function composed with itself n times.

Original entry on oeis.org

1, 2, 6, 26, 110, 532, 2541, 12644, 63024, 318857, 1618947, 8277062, 42453073, 218597485, 1128527057, 5841301830, 30297014746, 157442596130, 819511659381, 4272054888643, 22299423992018, 116539878029773, 609718298887977, 3193136462042241, 16737951567806110
Offset: 1

Views

Author

Alois P. Heinz, Aug 18 2012

Keywords

Crossrefs

Main diagonal of A022818.
Cf. A008485.

Programs

  • Maple
    A:= proc(n, k) option remember;
          `if`(k=1, 1, add(b(n, n, i)*A(i, k-1), i=0..n))
        end:
    b:= proc(n, i, k) option remember; `if`(n A(n, n):
    seq(a(n), n=1..40);
  • Mathematica
    A[n_, k_] := A[n, k] = If[k == 1, 1, Sum[b[n, n, i]*A[i, k-1], {i, 0, n}]]; b[n_, i_, k_] := b[n, i, k] = If[nJean-François Alcover, Feb 05 2015, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.35270133348664..., c = 0.0504640078963302151598181537452... . - Vaclav Kotesovec, Sep 03 2014, updated May 19 2018

A304625 a(n) = [x^n] Product_{k>=1} ((1 - x^(n*k))/(1 - x^k))^n.

Original entry on oeis.org

1, 0, 3, 19, 101, 501, 2486, 12398, 62329, 315436, 1605330, 8207552, 42124368, 216903051, 1119974861, 5796944342, 30068145889, 156250892593, 813310723907, 4239676354631, 22130265931880, 115654632452514, 605081974091853, 3168828466966365, 16610409114771876, 87141919856550506
Offset: 0

Views

Author

Ilya Gutkovskiy, May 15 2018

Keywords

Comments

Number of partitions of n into 2 or more parts of n kinds. - Ilya Gutkovskiy, May 16 2018

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 - x^(n k))/(1 - x^k))^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[Product[1/(1 - x^k)^n, {k, 1, n - 1}], {x, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.3527013334866426877724... and c = 0.268015212710733315686... - Vaclav Kotesovec, May 16 2018
Previous Showing 11-20 of 32 results. Next