A101447
Triangle read by rows: T(n,k) = (2*k+1)*(n+1-k), 0 <= k < n.
Original entry on oeis.org
1, 2, 3, 3, 6, 5, 4, 9, 10, 7, 5, 12, 15, 14, 9, 6, 15, 20, 21, 18, 11, 7, 18, 25, 28, 27, 22, 13, 8, 21, 30, 35, 36, 33, 26, 15, 9, 24, 35, 42, 45, 44, 39, 30, 17, 10, 27, 40, 49, 54, 55, 52, 45, 34, 19, 11, 30, 45, 56, 63, 66, 65, 60, 51, 38, 21, 12, 33, 50, 63, 72, 77, 78, 75, 68, 57, 42, 23
Offset: 0
From _Bruno Berselli_, Feb 10 2014: (Start)
Triangle begins:
1;
2, 3;
3, 6, 5;
4, 9, 10, 7;
5, 12, 15, 14, 9;
6, 15, 20, 21, 18, 11;
7, 18, 25, 28, 27, 22, 13;
8, 21, 30, 35, 36, 33, 26, 15;
9, 24, 35, 42, 45, 44, 39, 30, 17;
10, 27, 40, 49, 54, 55, 52, 45, 34, 19;
11, 30, 45, 56, 63, 66, 65, 60, 51, 38, 21;
etc.
(End)
-
t[n_, k_] := If[n < k, 0, (2*k + 1)*(n - k + 1)]; Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* Robert G. Wilson v, Jan 20 2005 *)
-
T(n,k)=if(n
A169825
Multiples of 420.
Original entry on oeis.org
0, 420, 840, 1260, 1680, 2100, 2520, 2940, 3360, 3780, 4200, 4620, 5040, 5460, 5880, 6300, 6720, 7140, 7560, 7980, 8400, 8820, 9240, 9660, 10080, 10500, 10920, 11340, 11760, 12180, 12600, 13020, 13440, 13860, 14280, 14700, 15120, 15540, 15960, 16380, 16800
Offset: 0
A209294
a(n) = (7*n^2 - 7*n + 4)/2.
Original entry on oeis.org
2, 9, 23, 44, 72, 107, 149, 198, 254, 317, 387, 464, 548, 639, 737, 842, 954, 1073, 1199, 1332, 1472, 1619, 1773, 1934, 2102, 2277, 2459, 2648, 2844, 3047, 3257, 3474, 3698, 3929, 4167, 4412, 4664, 4923, 5189, 5462
Offset: 1
-
[(7*n^2 - 7*n + 4)/2: n in [1..30]]; // G. C. Greubel, Jan 04 2018
-
Table[(7*n^2 - 7*n + 4)/2, {n, 1, 50}] (* G. C. Greubel, Jan 04 2018 *)
LinearRecurrence[{3,-3,1},{2,9,23},40] (* Harvey P. Dale, Nov 02 2020 *)
-
a(n)=7*n*(n-1)/2+2 \\ Charles R Greathouse IV, Jan 17 2013
A279895
a(n) = n*(5*n + 11)/2.
Original entry on oeis.org
0, 8, 21, 39, 62, 90, 123, 161, 204, 252, 305, 363, 426, 494, 567, 645, 728, 816, 909, 1007, 1110, 1218, 1331, 1449, 1572, 1700, 1833, 1971, 2114, 2262, 2415, 2573, 2736, 2904, 3077, 3255, 3438, 3626, 3819, 4017, 4220, 4428, 4641, 4859, 5082, 5310, 5543, 5781, 6024, 6272, 6525
Offset: 0
The first differences are in
A016885.
Cf. similar sequences provided by P(s,m)+s*m, where P(s,m) = ((s-2)*m^2-(s-4)*m)/2 is the m-th s-gonal number:
A008585 (s=2),
A055999 (s=3),
A028347 (s=4),
A140091 (s=5),
A033537 (s=6), this sequence (s=7),
A067725 (s=8).
-
[n*(5*n+11)/2: n in [0..60]];
-
Table[n (5 n + 11)/2, {n, 0, 60}]
LinearRecurrence[{3,-3,1},{0,8,21},60] (* Harvey P. Dale, Nov 14 2022 *)
-
vector(60, n, n--; n*(5*n+11)/2)
-
[n*(5*n+11)/2 for n in range(60)]
-
[n*(5*n+11)/2 for n in range(60)]
A336596
Numbers whose number of divisors is divisible by 7.
Original entry on oeis.org
64, 192, 320, 448, 576, 704, 729, 832, 960, 1088, 1216, 1344, 1458, 1472, 1600, 1728, 1856, 1984, 2112, 2240, 2368, 2496, 2624, 2752, 2880, 2916, 3008, 3136, 3264, 3392, 3520, 3645, 3648, 3776, 3904, 4032, 4160, 4288, 4416, 4544, 4672, 4800, 4928, 5056, 5103
Offset: 1
64 is a term since A000005(64) = 7 is divisible by 7.
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eckford Cohen, Arithmetical Notes, XIII. A Sequal to Note IV, Elemente der Mathematik, Vol. 18 (1963), pp. 8-11.
- S. S. Pillai, On a congruence property of the divisor function, J. Indian Math. Soc. (N. S.), Vol. 6, (1942), pp. 118-119.
- L. G. Sathe, On a congruence property of the divisor function, American Journal of Mathematics, Vol. 67, No. 3 (1945), pp. 397-406.
-
q:= n-> is(irem(numtheory[tau](n), 7)=0):
select(q, [$1..5500])[]; # Alois P. Heinz, Jul 26 2020
-
Select[Range[5000], Divisible[DivisorSigma[0, #], 7] &]
A016985
a(n) = (7n)^5.
Original entry on oeis.org
0, 16807, 537824, 4084101, 17210368, 52521875, 130691232, 282475249, 550731776, 992436543, 1680700000, 2706784157, 4182119424, 6240321451, 9039207968, 12762815625, 17623416832, 23863536599, 31757969376, 41615795893, 53782400000, 68641485507, 86617093024
Offset: 0
-
[(7*n)^5: n in [0..25]]; // Vincenzo Librandi, May 24 2011
-
A016985:=n->(7*n)^5: seq(A016985(n), n=0..30); # Wesley Ivan Hurt, Aug 27 2015
-
(7Range[0,20])^5 (* Harvey P. Dale, Feb 13 2011 *)
CoefficientList[Series[16807 (x + 26 x^2 + 66 x^3 + 26 x^4 + x^5)/(x - 1)^6, {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 27 2015 *)
A101468
Triangle read by rows: T(n,k)=(n+1-k)*(3*k+1).
Original entry on oeis.org
1, 2, 4, 3, 8, 7, 4, 12, 14, 10, 5, 16, 21, 20, 13, 6, 20, 28, 30, 26, 16, 7, 24, 35, 40, 39, 32, 19, 8, 28, 42, 50, 52, 48, 38, 22, 9, 32, 49, 60, 65, 64, 57, 44, 25, 10, 36, 56, 70, 78, 80, 76, 66, 50, 28, 11, 40, 63, 80, 91, 96, 95, 88, 75, 56, 31, 12, 44, 70, 90, 104, 112, 114
Offset: 0
Triangle begins:
1,
2, 4,
3, 8, 7,
4, 12, 14, 10,
5, 16, 21, 20, 13,
6, 20, 28, 30, 26, 16,
7, 24, 35, 40, 39, 32, 19,
8, 28, 42, 50, 52, 48, 38, 22,
9, 32, 49, 60, 65, 64, 57, 44, 25,
10, 36, 56, 70, 78, 80, 76, 66, 50, 28,
11, 40, 63, 80, 91, 96, 95, 88, 75, 56, 31, etc.
[_Bruno Berselli_, Feb 10 2014]
-
t[n_, k_] := If[n < k, 0, (3*k + 1)*(n - k + 1)]; Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* Robert G. Wilson v, Jan 21 2005 *)
-
T(n,k)=if(k>n,0,(n-k+1)*(3*k+1)) for(i=0,10, for(j=0,i,print1(T(i,j),", "));print())
A117795
Heptagonal numbers divisible by 7.
Original entry on oeis.org
0, 7, 112, 189, 469, 616, 1071, 1288, 1918, 2205, 3010, 3367, 4347, 4774, 5929, 6426, 7756, 8323, 9828, 10465, 12145, 12852, 14707, 15484, 17514, 18361, 20566, 21483, 23863, 24850, 27405, 28462, 31192, 32319, 35224, 36421, 39501, 40768, 44023
Offset: 1
Luc Stevens (lms022(AT)yahoo.com), Apr 29 2006
-
Select[PolygonalNumber[7,Range[0,200]],Divisible[#,7]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 02 2019 *)
-
isok(n) = ispolygonal(n, 7) && !(n % 7); \\ Michel Marcus, Feb 27 2014
A137182
Lucky numbers (A000959) which are congruent to 0 mod 7.
Original entry on oeis.org
7, 21, 49, 63, 105, 133, 189, 231, 259, 273, 357, 385, 399, 427, 483, 511, 553, 651, 679, 693, 735, 777, 805, 819, 903, 931, 1029, 1057, 1155, 1183, 1197, 1281, 1309, 1323, 1365, 1435, 1491, 1519, 1533, 1575, 1645, 1659, 1701, 1771, 1827, 1869, 1995, 2023, 2065
Offset: 1
A166389
Multiples of 7 whose reversal + 1 is also a multiple of 7.
Original entry on oeis.org
14, 84, 140, 147, 231, 238, 322, 329, 392, 399, 413, 483, 504, 574, 665, 756, 840, 847, 931, 938, 1043, 1134, 1225, 1295, 1316, 1386, 1400, 1407, 1470, 1477, 1561, 1568, 1652, 1659, 1743, 1834, 1925, 1995, 2044, 2135, 2226, 2296, 2310, 2317, 2380, 2387
Offset: 1
-
Select[7 Range[6!], Divisible[FromDigits[Reverse[IntegerDigits[#]]] + 1, 7] &] (* G. C. Greubel, May 12 2016 *)
Select[7Range[400],Mod[IntegerReverse[#]+1,7]==0&] (* Harvey P. Dale, Aug 16 2024 *)
-
isok(n) = !(n%7) && !((subst(Polrev(digits(n)),x,10)+1) % 7); \\ Michel Marcus, May 12 2016
Comments