cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 81 results. Next

A101447 Triangle read by rows: T(n,k) = (2*k+1)*(n+1-k), 0 <= k < n.

Original entry on oeis.org

1, 2, 3, 3, 6, 5, 4, 9, 10, 7, 5, 12, 15, 14, 9, 6, 15, 20, 21, 18, 11, 7, 18, 25, 28, 27, 22, 13, 8, 21, 30, 35, 36, 33, 26, 15, 9, 24, 35, 42, 45, 44, 39, 30, 17, 10, 27, 40, 49, 54, 55, 52, 45, 34, 19, 11, 30, 45, 56, 63, 66, 65, 60, 51, 38, 21, 12, 33, 50, 63, 72, 77, 78, 75, 68, 57, 42, 23
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 19 2005

Keywords

Comments

The triangle is generated from the product of matrix A and matrix B, i.e., A * B where A = the infinite lower triangular matrix:
1 0 0 0 0 ...
1 1 0 0 0 ...
1 1 1 0 0 ...
1 1 1 1 0 ...
1 1 1 1 1 ...
... and B = the infinite lower triangular matrix:
1 0 0 0 0 ...
1 3 0 0 0 ...
1 3 5 0 0 ...
1 3 5 7 0 ...
1 3 5 7 9 ...
...
Row sums give the square pyramidal numbers A000330.
T(n+0,0)=1*n=A000027(n+1); T(n+1,1)=3*n=A008585(n); T(n+2,2)=5*n=A008587(n); T(n+3,3)=7*n=A008589(n); etc. So T(n,0)*T(n,1)=3*n*(n+1)=A028896(n) (6 times triangular numbers). T(n,1)*T(n,2)/10=3*n*(n+1)/2=A045943(n) for n>0 T(n,2)*T(n,3)/10=7/2*n*(n+1)=A024966(n) for n>1 (7 times triangular numbers), etc.
From Gary W. Adamson, Apr 25 2010: (Start)
Consider the following array, signed as shown:
...
1, 3, 5, 7, 9, 11, ...
2, -6, 10, -14, 18, -22, ...
3, 9, 15, 21, 27, 33, ...
4, -12, 20, -28, 36, -44, ...
5, 15, 25, 35, 45, 55, ...
6, -18, 30, -42, 54, -66, ...
7, 21, 35, 49, 63, 77, ...
...
Let each term (+, -)k = (+, -) phi^(-k).
Consider the inverse terms of the Lucas series (1/1, 1/3, 1/4, 1/7, ...).
By way of example, let q = phi = 1.6180339...; then
...
1/1 = q^(-1) + q^(-3) + q^(-5) + q^(-7) + q^(-9) + ...
1/3 = q^(-2) - q^(-6) + q^(-10) - q^(-14) + q^(-18) + ...
1/4 = q^(-3) + q^(-9) + q^(-15) + q^(-21) + q^(-27) +...
1/7 = q^(-4) - q^(-12) + q^(-20) - q^(-28) + q^(-36) + ...
1/11 = q^(-5) + q^(-15) + q^(-25) + q^(-35) + q^(-45) + ...
...
Relating to the Pell series, the corresponding "Lucas"-like series is (2, 6, 14, 34, 82, 198, ...) such that herein, q = 2.414213... = (1 + sqrt(2)).
Then analogous to the previous set,
...
1/2 = q^(-1) + q^(-3) + q^(-5) + q^(-7) + ...
1/6 = q^(-2) - q^(-6) + q^(-10) - q^(-14) + q^(-18) + ...
... (End)

Examples

			From _Bruno Berselli_, Feb 10 2014: (Start)
Triangle begins:
   1;
   2,  3;
   3,  6,  5;
   4,  9, 10,  7;
   5, 12, 15, 14,  9;
   6, 15, 20, 21, 18, 11;
   7, 18, 25, 28, 27, 22, 13;
   8, 21, 30, 35, 36, 33, 26, 15;
   9, 24, 35, 42, 45, 44, 39, 30, 17;
  10, 27, 40, 49, 54, 55, 52, 45, 34, 19;
  11, 30, 45, 56, 63, 66, 65, 60, 51, 38, 21;
  etc.
(End)
		

Crossrefs

Cf. A094728 (triangle generated by B*A), A000330.

Programs

  • Mathematica
    t[n_, k_] := If[n < k, 0, (2*k + 1)*(n - k + 1)]; Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* Robert G. Wilson v, Jan 20 2005 *)
  • PARI
    T(n,k)=if(n
    				

A169825 Multiples of 420.

Original entry on oeis.org

0, 420, 840, 1260, 1680, 2100, 2520, 2940, 3360, 3780, 4200, 4620, 5040, 5460, 5880, 6300, 6720, 7140, 7560, 7980, 8400, 8820, 9240, 9660, 10080, 10500, 10920, 11340, 11760, 12180, 12600, 13020, 13440, 13860, 14280, 14700, 15120, 15540, 15960, 16380, 16800
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2010

Keywords

Comments

Numbers that are divisible by all of 1,2,3,4,5,6,7.

Crossrefs

Programs

Formula

a(n) = 420*n. - Wesley Ivan Hurt, Apr 11 2021
From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 420*x/(x-1)^2.
E.g.f.: 420*x*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 7*A169823(n) = 14*A249674(n) = 15*A135628(n) = 20*A008603(n) = 21*A008602(n) = 28*A008597(n) = 30*A008596(n) = 60*A008589(n) = 420*A001477(n) = A169827(n)/2. (End)

A209294 a(n) = (7*n^2 - 7*n + 4)/2.

Original entry on oeis.org

2, 9, 23, 44, 72, 107, 149, 198, 254, 317, 387, 464, 548, 639, 737, 842, 954, 1073, 1199, 1332, 1472, 1619, 1773, 1934, 2102, 2277, 2459, 2648, 2844, 3047, 3257, 3474, 3698, 3929, 4167, 4412, 4664, 4923, 5189, 5462
Offset: 1

Views

Author

Marco Piazzalunga, Jan 17 2013

Keywords

Comments

a(n) is the sum of the n-th centered triangular number and n-th centered square number.
Difference of consecutive terms gives A008589 (multiples of 7).

Crossrefs

Programs

Formula

a(n) = (7*n^2 - 7*n + 4) = 7*T(n) + 2 with T = A000217.
G.f.: x*(2+3*x+2*x^2)/(1-x)^3. - Bruno Berselli, Jan 18 2013
a(n) = a(-n+1) = 3*a(n-1)-3*a(n-2)+a(n-3). - Bruno Berselli, Jan 18 2013
a(n) = 1 + A069099(n). - Omar E. Pol, Apr 27 2017
E.g.f.: ((7*x^2 + 4)*exp(x) - 4)/2. - G. C. Greubel, Jan 04 2018

A279895 a(n) = n*(5*n + 11)/2.

Original entry on oeis.org

0, 8, 21, 39, 62, 90, 123, 161, 204, 252, 305, 363, 426, 494, 567, 645, 728, 816, 909, 1007, 1110, 1218, 1331, 1449, 1572, 1700, 1833, 1971, 2114, 2262, 2415, 2573, 2736, 2904, 3077, 3255, 3438, 3626, 3819, 4017, 4220, 4428, 4641, 4859, 5082, 5310, 5543, 5781, 6024, 6272, 6525
Offset: 0

Views

Author

Bruno Berselli, Dec 22 2016

Keywords

Crossrefs

Second bisection of A165720.
The first differences are in A016885.
Cf. similar sequences provided by P(s,m)+s*m, where P(s,m) = ((s-2)*m^2-(s-4)*m)/2 is the m-th s-gonal number: A008585 (s=2), A055999 (s=3), A028347 (s=4), A140091 (s=5), A033537 (s=6), this sequence (s=7), A067725 (s=8).

Programs

  • Magma
    [n*(5*n+11)/2: n in [0..60]];
  • Mathematica
    Table[n (5 n + 11)/2, {n, 0, 60}]
    LinearRecurrence[{3,-3,1},{0,8,21},60] (* Harvey P. Dale, Nov 14 2022 *)
  • PARI
    vector(60, n, n--; n*(5*n+11)/2)
    
  • Python
    [n*(5*n+11)/2 for n in range(60)]
    
  • Sage
    [n*(5*n+11)/2 for n in range(60)]
    

Formula

O.g.f.: x*(8 - 3*x)/(1 - x)^3.
E.g.f.: x*(16 + 5*x)*exp(x)/2.
a(n+h) - a(n-h) = h*A017281(n+1), with h>=0. A particular case:
a(n) - a(-n) = 11*n = A008593(n).
a(n+h) + a(n-h) = 2*a(n) + A033429(h), with h>=0. A particular case:
a(n) + a(-n) = A033429(n).
a(n) - a(n-2) = A017281(n) for n>1. Also:
40*a(n) + 121 = A017281(n+1)^2.
a(n) = A000566(n) + 7*n, also a(n) = A000566(n) + A008589(n). - Michel Marcus, Dec 22 2016

A336596 Numbers whose number of divisors is divisible by 7.

Original entry on oeis.org

64, 192, 320, 448, 576, 704, 729, 832, 960, 1088, 1216, 1344, 1458, 1472, 1600, 1728, 1856, 1984, 2112, 2240, 2368, 2496, 2624, 2752, 2880, 2916, 3008, 3136, 3264, 3392, 3520, 3645, 3648, 3776, 3904, 4032, 4160, 4288, 4416, 4544, 4672, 4800, 4928, 5056, 5103
Offset: 1

Views

Author

Amiram Eldar, Jul 26 2020

Keywords

Comments

The asymptotic density of this sequence is 1 - zeta(7)/zeta(6) = 0.0088404638... (Sathe, 1945).

Examples

			64 is a term since A000005(64) = 7 is divisible by 7.
		

Crossrefs

Cf. A030516, A113851 and A138031 are subsequences.

Programs

  • Maple
    q:= n-> is(irem(numtheory[tau](n), 7)=0):
    select(q, [$1..5500])[];  # Alois P. Heinz, Jul 26 2020
  • Mathematica
    Select[Range[5000], Divisible[DivisorSigma[0, #], 7] &]

Formula

A030516 UNION A030632 UNION A137484 UNION A137491 UNION A175745 UNION A175750 UNION ... - R. J. Mathar, May 05 2023

A016985 a(n) = (7n)^5.

Original entry on oeis.org

0, 16807, 537824, 4084101, 17210368, 52521875, 130691232, 282475249, 550731776, 992436543, 1680700000, 2706784157, 4182119424, 6240321451, 9039207968, 12762815625, 17623416832, 23863536599, 31757969376, 41615795893, 53782400000, 68641485507, 86617093024
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Wesley Ivan Hurt, Aug 27 2015: (Start)
a(n) = (7n)^5 = 16807*n^5 = A000584(A008589(n)).
G.f.: 16807*(x+26*x^2+66*x^3+26*x^4+x^5)/(x-1)^6.
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6), n>5. (End)

A101468 Triangle read by rows: T(n,k)=(n+1-k)*(3*k+1).

Original entry on oeis.org

1, 2, 4, 3, 8, 7, 4, 12, 14, 10, 5, 16, 21, 20, 13, 6, 20, 28, 30, 26, 16, 7, 24, 35, 40, 39, 32, 19, 8, 28, 42, 50, 52, 48, 38, 22, 9, 32, 49, 60, 65, 64, 57, 44, 25, 10, 36, 56, 70, 78, 80, 76, 66, 50, 28, 11, 40, 63, 80, 91, 96, 95, 88, 75, 56, 31, 12, 44, 70, 90, 104, 112, 114
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 21 2005

Keywords

Comments

The triangle is generated from the product A*B
of the infinite lower triangular matrices A =
1 0 0 0...
1 1 0 0...
1 1 1 0...
1 1 1 1...
... and B =
1 0 0 0...
1 4 0 0...
1 4 7 0...
1 4 7 10...
...
Row sums give pentagonal pyramidal numbers A002411 T(n+0,0)= 1*n=A000027(n) T(n+0,1)= 4*n=A008586(n) T(n+1,2)= 7*n=A008589(n) T(n+2,3)=10*n=A008592(n) ...
so for example T(n+1,n-0)=6*n+2=A016933(n) T(n+1,n-1)=9*n+3=A017197(n) T(n+2,n-1)=12*n+4=A017569(n)
T(n,0)*T(n,1) = A033996(n) (8 times triangular numbers)
T(n,n)*T(n,0) = A000567(n+1) (Octagonal numbers) etc.

Examples

			Triangle begins:
1,
2,  4,
3,  8,  7,
4,  12, 14, 10,
5,  16, 21, 20, 13,
6,  20, 28, 30, 26, 16,
7,  24, 35, 40, 39, 32, 19,
8,  28, 42, 50, 52, 48, 38, 22,
9,  32, 49, 60, 65, 64, 57, 44, 25,
10, 36, 56, 70, 78, 80, 76, 66, 50, 28,
11, 40, 63, 80, 91, 96, 95, 88, 75, 56, 31, etc.
[_Bruno Berselli_, Feb 10 2014]
		

Crossrefs

Cf. A095871 (product B*A), A002411.

Programs

  • Mathematica
    t[n_, k_] := If[n < k, 0, (3*k + 1)*(n - k + 1)]; Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* Robert G. Wilson v, Jan 21 2005 *)
  • PARI
    T(n,k)=if(k>n,0,(n-k+1)*(3*k+1)) for(i=0,10, for(j=0,i,print1(T(i,j),", "));print())

A117795 Heptagonal numbers divisible by 7.

Original entry on oeis.org

0, 7, 112, 189, 469, 616, 1071, 1288, 1918, 2205, 3010, 3367, 4347, 4774, 5929, 6426, 7756, 8323, 9828, 10465, 12145, 12852, 14707, 15484, 17514, 18361, 20566, 21483, 23863, 24850, 27405, 28462, 31192, 32319, 35224, 36421, 39501, 40768, 44023
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 29 2006

Keywords

Comments

Intersection of A000566 and A008589. Their indices are given by A047352. - Michel Marcus, Feb 27 2014

Crossrefs

Programs

  • Mathematica
    Select[PolygonalNumber[7,Range[0,200]],Divisible[#,7]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 02 2019 *)
  • PARI
    isok(n) = ispolygonal(n, 7) && !(n % 7); \\ Michel Marcus, Feb 27 2014

A137182 Lucky numbers (A000959) which are congruent to 0 mod 7.

Original entry on oeis.org

7, 21, 49, 63, 105, 133, 189, 231, 259, 273, 357, 385, 399, 427, 483, 511, 553, 651, 679, 693, 735, 777, 805, 819, 903, 931, 1029, 1057, 1155, 1183, 1197, 1281, 1309, 1323, 1365, 1435, 1491, 1519, 1533, 1575, 1645, 1659, 1701, 1771, 1827, 1869, 1995, 2023, 2065
Offset: 1

Views

Author

N. J. A. Sloane, Mar 07 2008

Keywords

Crossrefs

Intersection of A000959 and A008589.

A166389 Multiples of 7 whose reversal + 1 is also a multiple of 7.

Original entry on oeis.org

14, 84, 140, 147, 231, 238, 322, 329, 392, 399, 413, 483, 504, 574, 665, 756, 840, 847, 931, 938, 1043, 1134, 1225, 1295, 1316, 1386, 1400, 1407, 1470, 1477, 1561, 1568, 1652, 1659, 1743, 1834, 1925, 1995, 2044, 2135, 2226, 2296, 2310, 2317, 2380, 2387
Offset: 1

Views

Author

Claudio Meller, Oct 13 2009

Keywords

Crossrefs

Subsequence of A008589.

Programs

  • Mathematica
    Select[7 Range[6!], Divisible[FromDigits[Reverse[IntegerDigits[#]]] + 1, 7] &] (* G. C. Greubel, May 12 2016 *)
    Select[7Range[400],Mod[IntegerReverse[#]+1,7]==0&] (* Harvey P. Dale, Aug 16 2024 *)
  • PARI
    isok(n) = !(n%7) && !((subst(Polrev(digits(n)),x,10)+1) % 7); \\ Michel Marcus, May 12 2016
Previous Showing 61-70 of 81 results. Next