cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 93 results. Next

A317633 Numbers congruent to {1, 7, 9} mod 10.

Original entry on oeis.org

1, 7, 9, 11, 17, 19, 21, 27, 29, 31, 37, 39, 41, 47, 49, 51, 57, 59, 61, 67, 69, 71, 77, 79, 81, 87, 89, 91, 97, 99, 101, 107, 109, 111, 117, 119, 121, 127, 129, 131, 137, 139, 141, 147, 149, 151, 157, 159, 161, 167, 169
Offset: 1

Views

Author

Paul Curtz, Aug 02 2018

Keywords

Comments

When multiplied by 10, one gets the numbers ending in "dix" in French (10, 70, 90, 110, ...).

Examples

			G.f. = x + 7*x^2 + 9*x^3+ 11*x^4 + 17*x^5 + 19*x^6 + 21*x^7 + 27*x^8 + ... - _Michael Somos_, Aug 19 2018
		

Crossrefs

Programs

  • Magma
    [n: n in [0..170]|n mod 10 in {1, 7, 9}]; // Vincenzo Librandi, Aug 05 2018
    
  • Mathematica
    Table[2 n + 4 Floor[(n + 1)/3] - 1, {n, 1, 60}] (* Bruno Berselli, Jul 02 2018 *)
    Select[Range[0, 250], MemberQ[{1, 7, 9}, Mod[#, 10]]&] (* Vincenzo Librandi, Aug 05 2018 *)
    CoefficientList[ Series[(x^3 + 2x^2 + 6x + 1)/((x - 1)^2 (x^2 + x + 1)), {x, 0, 60}], x] (* or *)
    LinearRecurrence[{1, 0, 1, -1}, {1, 7, 9, 11}, 61] (* Robert G. Wilson v, Aug 08 2018 *)
  • PARI
    x='x+O('x^60); Vec(x*(1+6*x+2*x^2+x^3)/((1-x)^2*(1+x+x^2))) \\ G. C. Greubel, Aug 08 2018

Formula

a(n) = a(n-3) + 10, a(1) = 1, a(2) = 7, a(3) = 9.
From Bruno Berselli, Jul 02 2018: (Start)
G.f.: x*(1 + 6*x + 2*x^2 + x^3)/((1 - x)^2*(1 + x + x^2)).
a(n) = 2*n + 4*floor((n+1)/3) - 1. (End)

Extensions

Definition from Jianing Song, Aug 02 2018

A322489 Numbers k such that k^k ends with 4.

Original entry on oeis.org

2, 18, 22, 38, 42, 58, 62, 78, 82, 98, 102, 118, 122, 138, 142, 158, 162, 178, 182, 198, 202, 218, 222, 238, 242, 258, 262, 278, 282, 298, 302, 318, 322, 338, 342, 358, 362, 378, 382, 398, 402, 418, 422, 438, 442, 458, 462, 478, 482, 498, 502, 518, 522, 538, 542, 558
Offset: 1

Views

Author

Bruno Berselli, Dec 12 2018

Keywords

Comments

Also numbers k == 2 (mod 4) such that 2^k and k^2 end with the same digit.
Numbers congruent to {2, 18} mod 20. - Amiram Eldar, Feb 27 2023

Crossrefs

Subsequence of A139544, A235700.
Numbers k such that k^k ends with d: A008592 (d=0), A017281 (d=1), A067870 (d=3), this sequence (d=4), A017329 (d=5), A271346 (d=6), A322490 (d=7), A017377 (d=9).

Programs

  • GAP
    List([1..70], n -> 10*n+3*(-1)^n-5);
    
  • Julia
    [10*n+3*(-1)^n-5 for n in 1:70] |> println
    
  • Magma
    [10*n+3*(-1)^n-5: n in [1..70]];
    
  • Maple
    select(n->n^n mod 10=4,[$1..558]); # Paolo P. Lava, Dec 18 2018
  • Mathematica
    Table[10 n + 3 (-1)^n - 5, {n, 1, 60}]
  • Maxima
    makelist(10*n+3*(-1)^n-5, n, 1, 70);
    
  • PARI
    apply(A322489(n)=10*n+3*(-1)^n-5, [1..70]) \\ M. F. Hasler, Dec 14 2018
    
  • PARI
    Vec(2*x*(1 + 8*x + x^2) / ((1 - x)^2*(1 + x)) + O(x^70)) \\ Colin Barker, Dec 13 2018
  • Python
    [10*n+3*(-1)**n-5 for n in range(1, 70)]
    
  • Sage
    [10*n+3*(-1)^n-5 for n in (1..70)]
    

Formula

O.g.f.: 2*x*(1 + 8*x + x^2)/((1 + x)*(1 - x)^2).
E.g.f.: 2 + 3*exp(-x) + 5*(2*x - 1)*exp(x).
a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).
a(n) = 10*n + 3*(-1)^n - 5. Therefore:
a(n) = 10*n - 8 for odd n;
a(n) = 10*n - 2 for even n.
a(n+2*k) = a(n) + 20*k.
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(2*Pi/5)*Pi/20 = sqrt(5+2*sqrt(5))*Pi/20. - Amiram Eldar, Feb 27 2023

A376538 Natural numbers whose iterated squaring modulo 1000 eventually settles at the attractor 1.

Original entry on oeis.org

1, 57, 193, 249, 251, 307, 443, 499, 501, 557, 693, 749, 751, 807, 943, 999, 1001, 1057, 1193, 1249, 1251, 1307, 1443, 1499, 1501, 1557, 1693, 1749, 1751, 1807, 1943, 1999, 2001, 2057, 2193, 2249, 2251, 2307, 2443, 2499, 2501, 2557, 2693, 2749, 2751, 2807
Offset: 1

Views

Author

Martin Renner, Sep 26 2024

Keywords

Comments

The natural numbers decompose into eight categories under the operation of repeated squaring modulo 1000, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (this sequence), 376 (cf. A376539), or 625 (cf. A017329), two of which eventually enter one of the 4-cycles 176, 976, 576, 776 (cf. A376540) or 201, 401, 801, 601 (cf. A376541), and two of which eventually enter one of the 20-cycles 16, 256, 536, 296, 616, 456, 936, 96, 216, 656, 336, 896, 816, 856, 736, 696, 416, 56, 136, 496 (cf. A376508) or 41, 681, 761, 121, 641, 881, 161, 921, 241, 81, 561, 721, 841, 281, 961, 521, 441, 481, 361, 321 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length four: 56, 136, 56, 2, ...

Examples

			57^2 = 249 -> 249^2 = 1 -> 1^2 = 1 -> ... (mod 1000).
		

Crossrefs

A376539 Natural numbers whose iterated squaring modulo 1000 eventually settles at the attractor 376.

Original entry on oeis.org

68, 124, 126, 182, 318, 374, 376, 432, 568, 624, 626, 682, 818, 874, 876, 932, 1068, 1124, 1126, 1182, 1318, 1374, 1376, 1432, 1568, 1624, 1626, 1682, 1818, 1874, 1876, 1932, 2068, 2124, 2126, 2182, 2318, 2374, 2376, 2432, 2568, 2624, 2626, 2682, 2818, 2874
Offset: 1

Views

Author

Martin Renner, Sep 26 2024

Keywords

Comments

The natural numbers decompose into eight categories under the operation of repeated squaring modulo 1000, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376538), 376 (this sequence), or 625 (cf. A017329), two of which eventually enter one of the 4-cycles 176, 976, 576, 776 (cf. A376540) or 201, 401, 801, 601 (cf. A376541), and two of which eventually enter one of the 20-cycles 16, 256, 536, 296, 616, 456, 936, 96, 216, 656, 336, 896, 816, 856, 736, 696, 416, 56, 136, 496 (cf. A376508) or 41, 681, 761, 121, 641, 881, 161, 921, 241, 81, 561, 721, 841, 281, 961, 521, 441, 481, 361, 321 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length four: 56, 2, 56, 136, ...

Examples

			68^2 = 624 -> 624^2 = 376 -> 376^2 = 376 -> ... (mod 1000).
		

Crossrefs

A376540 Natural numbers whose iterated squaring modulo 1000 eventually enters the 4-cycle 176, 976, 576, 776.

Original entry on oeis.org

18, 24, 26, 32, 74, 76, 82, 118, 132, 168, 174, 176, 218, 224, 226, 232, 268, 274, 276, 282, 324, 326, 332, 368, 382, 418, 424, 426, 468, 474, 476, 482, 518, 524, 526, 532, 574, 576, 582, 618, 632, 668, 674, 676, 718, 724, 726, 732, 768, 774, 776, 782, 824
Offset: 1

Views

Author

Martin Renner, Sep 26 2024

Keywords

Comments

The natural numbers decompose into eight categories under the operation of repeated squaring modulo 1000, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376538), 376 (cf. A376539), or 625 (cf. A017329), two of which eventually enter one of the 4-cycles 176, 976, 576, 776 (this sequence) or 201, 401, 801, 601 (cf. A376541), and two of which eventually enter one of the 20-cycles 16, 256, 536, 296, 616, 456, 936, 96, 216, 656, 336, 896, 816, 856, 736, 696, 416, 56, 136, 496 (cf. A376508) or 41, 681, 761, 121, 641, 881, 161, 921, 241, 81, 561, 721, 841, 281, 961, 521, 441, 481, 361, 321 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length sixteen: 6, 2, 6, 42, 2, 6, 36, 14, 36, 6, 2, 42, 6, 2, 6, 36, ...

Examples

			18^2 = 324 -> 324^2 = 976 -> 976^2 = 576 -> 576^2 = 776 -> 776^2 = 176 -> 176^2 = 976 -> ... (mod 1000).
		

Crossrefs

A376541 Natural numbers whose iterated squaring modulo 1000 eventually enters the 4-cycle 201, 401, 801, 601.

Original entry on oeis.org

7, 43, 49, 51, 93, 99, 101, 107, 143, 149, 151, 157, 199, 201, 207, 243, 257, 293, 299, 301, 343, 349, 351, 357, 393, 399, 401, 407, 449, 451, 457, 493, 507, 543, 549, 551, 593, 599, 601, 607, 643, 649, 651, 657, 699, 701, 707, 743, 757, 793, 799, 801, 843
Offset: 1

Views

Author

Martin Renner, Sep 26 2024

Keywords

Comments

The natural numbers decompose into eight categories under the operation of repeated squaring modulo 1000, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376538), 376 (cf. A376539), or 625 (cf. A017329), two of which eventually enter one of the 4-cycles 176, 976, 576, 776 (cf. A376540) or 201, 401, 801, 601 (this sequence), and two of which eventually enter one of the 20-cycles 16, 256, 536, 296, 616, 456, 936, 96, 216, 656, 336, 896, 816, 856, 736, 696, 416, 56, 136, 496 (cf. A376508) or 41, 681, 761, 121, 641, 881, 161, 921, 241, 81, 561, 721, 841, 281, 961, 521, 441, 481, 361, 321 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length sixteen: 36, 6, 2, 42, 6, 2, 6, 36, 6, 2, 6, 42, 2, 6, 36, 14, ...

Examples

			7^2 = 49 -> 49^2 = 401 -> 401^2 = 801 -> 801^2 = 601 -> 601^2 = 201 -> 201^2 = 401 -> ... (mod 1000).
		

Crossrefs

A059691 Carryless product 12 X n base 10.

Original entry on oeis.org

0, 12, 24, 36, 48, 50, 62, 74, 86, 98, 120, 132, 144, 156, 168, 170, 182, 194, 106, 118, 240, 252, 264, 276, 288, 290, 202, 214, 226, 238, 360, 372, 384, 396, 308, 310, 322, 334, 346, 358, 480, 492, 404, 416, 428, 430, 442, 454, 466, 478, 500, 512, 524, 536
Offset: 0

Views

Author

Henry Bottomley, Feb 19 2001

Keywords

Examples

			a(97)=954 since we have 12 X 97 = carryless sum of 900, 80, 70 and 4 = 954
		

Crossrefs

Cf. A001477 for carryless 1 X n, A004520 for carryless 2 X n base 10, A055120 for carryless 9 X n, A008592 for carryless 10 X n.

A104045 Numbers k such that k9 is prime and k is a multiple of ten.

Original entry on oeis.org

10, 40, 50, 70, 80, 100, 110, 140, 160, 170, 230, 260, 290, 310, 320, 370, 440, 490, 500, 520, 530, 670, 710, 730, 800, 820, 860, 910, 920, 1000, 1070, 1090, 1190, 1210, 1240, 1280, 1300, 1310, 1330, 1370, 1400, 1580, 1720, 1750, 1760, 1790, 1900, 1930, 1960, 1970, 2050, 2080, 2210
Offset: 1

Views

Author

Parthasarathy Nambi, Mar 01 2005

Keywords

Examples

			If k =  10, then k9 =  109 (prime).
If k = 160, then k9 = 1609 (prime).
If k = 320, then k9 = 3209 (prime).
		

Crossrefs

Cf. A030433, A008592, A102700, A166560 (resulting primes).

Programs

  • Maple
    select(n-> isprime(10*n+9), [10*i$i=1..300])[];  # Alois P. Heinz, Jan 19 2024
  • Mathematica
    Select[Range[10,2210,10],PrimeQ[FromDigits[Prepend[{9},#]]]&] (* James C. McMahon, Jan 19 2024 *)
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from (k for k in count(10, 10) if isprime(10*k+9))
    print(list(islice(agen(), 53))) # Michael S. Branicky, Jan 19 2024

A121719 Strings of digits which are composite regardless of the base in which they are interpreted. Exclude bases in which numbers are not interpretable.

Original entry on oeis.org

4, 6, 8, 9, 20, 22, 24, 26, 28, 30, 33, 36, 39, 40, 42, 44, 46, 48, 50, 55, 60, 62, 63, 64, 66, 68, 69, 70, 77, 80, 82, 84, 86, 88, 90, 93, 96, 99, 100, 110, 112, 114, 116, 118, 120, 121, 130, 132, 134, 136, 138, 140, 143, 144
Offset: 1

Views

Author

Tanya Khovanova, Sep 08 2006

Keywords

Comments

"Think of these as polynomials. E.g. 121 is the polynomial n^2+2n+1. There are three cases:
"(1) If the coefficients (digits) all have a common factor, the result will be divisible by that factor.
"(2) If the polynomial can be factored, the numbers will be composite. n^2+2n+1 = (n+1)^2, so it is always composite.
"(3) Otherwise, look at the polynomial modulo primes up to its degree. For example, 112 (n^2+n+2, degree 2) modulo 2 is always 0, so it is always divisible by 2.
"Note that condition (1) is really a special case of condition (2), where one of the factors is a constant.
"If none of the above conditions apply, the polynomial will (probably) have prime values."
From Iain Fox, Sep 02 2020: (Start)
lim_{k->infinity} (1/k)*Sum_{i=1..k} a_c(i) > .3 if it exists, where a_c(n) is the characteristic function of a(n) (1 if n is in a(n), otherwise 0).
If the Bunyakovsky conjecture is true, the list of reasons a number is in this sequence detailed by Franklin T. Adams-Watters above is a complete list.
If the Bunyakovsky conjecture and the Extended Riemann Hypothesis are true, the above limit equals 4340435807/13235512500 = 0.3279386... (proof by Ravi Fernando in link by Iain Fox).
All members of A008592 except 1 and 10 are in this sequence.
(End)

Examples

			String 55 in every base in which it is interpretable is divisible by 5. String 1001 in base a is divisible by a+1. Hence 55 and 1001 both belong to this sequence.
		

Crossrefs

Supersequence: A002808.

Programs

  • PARI
    is(n)=if(n<10, return(!isprime(n)&&n>1)); if(content(n=digits(n))>1, return(1)); if(vecsum(factor(n*=vectorv(#n, i, x^(#n-i)))[,2])>1, return(1)); forprime(p=2, #n-1, for(x=1, p, if(eval(n)%p, next(2))); return(1)); for(x=vecmax(Vec(n))+1, +oo, if(isprime(eval(n)), return(0))) \\ Iain Fox, Aug 31 2020

Extensions

More terms from Franklin T. Adams-Watters, Sep 12 2006

A166150 a(n) = 5*n^2 + 5*n - 9.

Original entry on oeis.org

1, 21, 51, 91, 141, 201, 271, 351, 441, 541, 651, 771, 901, 1041, 1191, 1351, 1521, 1701, 1891, 2091, 2301, 2521, 2751, 2991, 3241, 3501, 3771, 4051, 4341, 4641, 4951, 5271, 5601, 5941, 6291, 6651, 7021, 7401, 7791, 8191, 8601, 9021, 9451, 9891, 10341
Offset: 1

Views

Author

Vincenzo Librandi, Oct 08 2009

Keywords

Comments

First differences are in A008592.

Crossrefs

Cf. A008592.

Programs

Formula

a(n) = a(n-1) + 10*n (with a(1)=1).
G.f.: x*(1+18*x-9*x^2)/(1-x)^3. - Vincenzo Librandi, Sep 13 2013
From G. C. Greubel, May 01 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (5*x^2 + 10*x - 9)*exp(x) + 9. (End)
Sum_{n>=1} 1/a(n) = 1/9 + (Pi/sqrt(205))*tan(sqrt(41/5)*Pi/2). - Amiram Eldar, Feb 20 2023

Extensions

a(29)-a(45) corrected by Charles R Greathouse IV, Jan 11 2012
New name from Charles R Greathouse IV, Jan 11 2012
Previous Showing 41-50 of 93 results. Next