cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A288777 Triangle read by rows in which column k lists the positive multiples of the factorial of k, with 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 3, 4, 6, 4, 6, 12, 24, 5, 8, 18, 48, 120, 6, 10, 24, 72, 240, 720, 7, 12, 30, 96, 360, 1440, 5040, 8, 14, 36, 120, 480, 2160, 10080, 40320, 9, 16, 42, 144, 600, 2880, 15120, 80640, 362880, 10, 18, 48, 168, 720, 3600, 20160, 120960, 725760, 3628800, 11, 20, 54, 192, 840, 4320, 25200, 161280, 1088640
Offset: 1

Views

Author

Omar E. Pol, Jun 15 2017

Keywords

Comments

T(n,k) is the number of k-digit numbers in base n+1 with distinct positive digits that form an integer interval when sorted.
T(9,k) is also the number of numbers with k digits in A288528.
The number of terms in A288528 is also A014145(9) = 462331, the same as the sum of the 9th row of this triangle.
Removing the left column of A137267 and of A137948 then this triangle appears in both cases.

Examples

			Triangle begins:
   1;
   2,  2;
   3,  4,  6;
   4,  6, 12,  24;
   5,  8, 18,  48, 120;
   6, 10, 24,  72, 240,  720;
   7, 12, 30,  96, 360, 1440,  5040;
   8, 14, 36, 120, 480, 2160, 10080,  40320;
   9, 16, 42, 144, 600, 2880, 15120,  80640,  362880;
  10, 18, 48, 168, 720, 3600, 20160, 120960,  725760, 3628800;
  11, 20, 54, 192, 840, 4320, 25200, 161280, 1088640, 7257600, 39916800;
  ...
For n = 9 and k = 2: T(9,2) is the number of numbers with two digits in A288528.
For n = 9 the row sum is 9 + 16 + 42 + 144 + 600 + 2880 + 15120 + 80640 + 362880 = 462331, the same as A014145(9) and also the same as the number of terms in A288528.
		

Crossrefs

Right border gives A000142, n>=1.
Middle diagonal gives A001563, n>=1.
Row sums give A014145, n>=1.
Column 1..4: A000027, A005843, A008588, A008606.

Programs

  • Mathematica
    Table[(n - k + 1) k!, {n, 11}, {k, n}] // Flatten (* Michael De Vlieger, Jun 15 2017 *)

Formula

T(n,k) = (n-k+1)*k! = (n-k+1)*A000142(k) = A004736(n,k)*A166350(n,k).
T(n,k) = Sum_{j=1..n} A166350(j,k).
T(n,k) = A288778(n,k) + A000142(k-1).

A291900 Sum of the divisors of 24*n - 1, divided by 24, minus n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 2, 0, 3, 0, 0, 2, 0, 9, 0, 0, 2, 2, 7, 0, 4, 0, 3, 6, 0, 0, 3, 5, 7, 0, 0, 0, 0, 15, 6, 0, 3, 0, 9, 4, 0, 10, 0, 13, 5, 0, 3, 3, 22, 0, 4, 0, 5, 12, 0, 19, 0, 0, 13, 0, 0, 0, 10, 14, 4, 6, 7, 5, 19, 11, 0, 0, 0, 16, 5, 4, 12, 8, 28, 0, 0, 0, 0, 35, 6, 4, 0, 5, 32, 4, 18, 8, 0, 31, 0
Offset: 1

Views

Author

Omar E. Pol, Nov 02 2017

Keywords

Comments

The indices of the zeros give A131210.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 24 n - 1]/24 - n; Array[a, 90] (* Robert G. Wilson v, Nov 04 2017 *)
  • PARI
    a(n) = sigma(24*n-1)/24 - n; \\ Michel Marcus, Nov 04 2017

Formula

a(n) = sigma(24*n-1)/24 - n = A000203(A183010(n))/24 - n = A280097(n)/24 - n = A280098(n) - n.
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/18 - 1/2 = 0.048311... . - Amiram Eldar, Mar 28 2024

A348845 Part two of the trisection of A017101: a(n) = 11 + 24*n.

Original entry on oeis.org

11, 35, 59, 83, 107, 131, 155, 179, 203, 227, 251, 275, 299, 323, 347, 371, 395, 419, 443, 467, 491, 515, 539, 563, 587, 611, 635, 659, 683, 707, 731, 755, 779, 803, 827, 851, 875, 899, 923, 947, 971, 995, 1019, 1043, 1067
Offset: 0

Views

Author

Wolfdieter Lang, Dec 11 2021

Keywords

Comments

The trisection of A017101 = {3 + 8*k}A017077%20=%20%7B3*(1%20+%2012*n)%7D">{k>=0} gives 3*A017077 = {3*(1 + 12*n)}{n>=0}, {a(n)}A350051%20=%20%7B19%20+%2024*n%7D">{n >= 0} and A350051 = {19 + 24*n}{n>=0}. These three sequences are congruent to 3 modulo 8 and to 3, 5, and 1 modulo 6, respectively.

Crossrefs

Programs

  • Mathematica
    24 * Range[0, 44] + 11 (* Amiram Eldar, Dec 18 2021 *)

Formula

a(n) = 11 + 24*n = 11 + A008606(n), for n >= 0
a(n) = 2*a(n-1) - a(n-2), for n >= 1, with a(-1) = -13, a(0) = 11.
G.f.: (11 + 13*x)/(1-x)^2.
E.g.f.: (11 + 24*x)*exp(x).

A350051 Part three of the trisection of A017101: a(n) = 19 + 24*n.

Original entry on oeis.org

19, 43, 67, 91, 115, 139, 163, 187, 211, 235, 259, 283, 307, 331, 355, 379, 403, 427, 451, 475, 499, 523, 547, 571, 595, 619, 643, 667, 691, 715, 739, 763, 787, 811, 835, 859, 883, 907, 931, 955, 979, 1003, 1027, 1051, 1075
Offset: 0

Views

Author

Wolfdieter Lang, Dec 11 2021

Keywords

Comments

The trisection of A017101 = {3 + 8*k}A017077%20=%20%7B3*(1%20+%2012*n)%7D">{k>=0} gives 3*A017077 = {3*(1 + 12*n)}{n>=0}, {A348845(n)}{n >= 0} and {a(n)}{n>=0}. These three sequences are congruent to 3 modulo 8 and to 3, 5, and 1 modulo 6, respectively.

Crossrefs

Programs

Formula

a(n) = 19 + 24*n = 19 + A008606(n), for n >= 0
a(n) = 2*a(n-1) - a(n-2), for n >= 1, with a(-1) = -5, a(0) = 19.
G.f.: (19 + 5*x)/(1-x)^2.
E.g.f.: (19 + 24*x)*exp(x).

A383488 Numbers k that have at least one divisor d_i(k) for which a divisor d_j(k) exists such that d_i(k) < d_j(k) < sigma(d_i(k)).

Original entry on oeis.org

12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 99, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 130, 132, 138, 140, 144, 150, 154, 156, 160, 162, 168, 170, 174, 176, 180, 186, 189, 192, 196, 198, 200, 204, 208, 210, 216
Offset: 1

Views

Author

Felix Huber, May 03 2025

Keywords

Comments

Numbers k (without multiplicity) that are multiples of lcm(c,i), where c is any composite and i is any integer from [c + 1, sigma(c) - 1].

Examples

			All multiples of 12 (A008594) are terms because 12 has the divisors 4 and 6 where sigma(4) = 7 > 6.
All multiples of 18 (A008600) are terms because 18 has the divisors 6 and 9 where sigma(6) = 12 > 9.
All multiples of 20 (A008602) are terms because 20 has the divisors 4 and 5 where sigma(4) = 7 > 5.
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    A383488:=proc(n)
        option remember;
        local k,i,L;
        if n=1 then
            12
        else
            for k from procname(n-1)+1 do
                L:=Divisors(k);
                for i to nops(L)-1 do
                    if sigma(L[i])>L[i+1] then
                        return k
                    fi
                od
            od
        fi;
    end proc;
    seq(A383488(n),n=1..57);

A157517 a(n) = 7 + 12*n - 6*n^2.

Original entry on oeis.org

7, 13, 7, -11, -41, -83, -137, -203, -281, -371, -473, -587, -713, -851, -1001, -1163, -1337, -1523, -1721, -1931, -2153, -2387, -2633, -2891, -3161, -3443, -3737, -4043, -4361, -4691, -5033, -5387, -5753, -6131, -6521, -6923, -7337, -7763, -8201, -8651
Offset: 0

Views

Author

Paul Curtz, Mar 02 2009

Keywords

Comments

From John Couch Adams multisteps integration of differential equations, 1855.

References

  • P. Curtz Integration numerique des systemes differentiels, C.C.S.A., Arcueil, 1969, p. 36.

Programs

Formula

a(n) = 12*n + 6 - A140811(n) = A017593(n) - A140811(n).
Recurrences: a(n) = 2*a(n-1) - a(n-2) - 12 = 3*a(n-1) - 3*a(n-2) + a(n-3).
First differences: a(n+1) - a(n) = -A017593(n-1), n > 0. Second differences are all -12.
a(n+2) - a(n) = -A008606(n).
G.f.: (-7 + 8*x + 11*x^2)/(x-1)^3. - R. J. Mathar, Mar 15 2009

Extensions

Edited and extended by R. J. Mathar, Mar 15 2009

A183008 a(n) = 24*p(n) = 24*A000041(n).

Original entry on oeis.org

24, 24, 48, 72, 120, 168, 264, 360, 528, 720, 1008, 1344, 1848, 2424, 3240, 4224, 5544, 7128, 9240, 11760, 15048, 19008, 24048, 30120, 37800, 46992, 58464, 72240, 89232, 109560, 134496, 164208, 200376, 243432, 295440, 357192, 431448, 519288, 624360, 748440
Offset: 0

Views

Author

Omar E. Pol, Jan 22 2011

Keywords

Comments

a(n) is also the area of one of the faces of the rectangular cuboid which is a three-dimensional version of the shell model of partitions of n. The areas of the other faces are A008606(n)=24*n and A066186(n)=n*p(n), where p(n) is the number of partitions of n. See A135010 for more information.

Examples

			The number of partitions of 6 is p(6) = A000041(6) = 11, so a(6) = 24*11 = 264.
		

Crossrefs

Programs

  • Mathematica
    24 PartitionsP[Range[0,40]] (* Harvey P. Dale, Sep 17 2024 *)

A207036 Numbers k such that the sum of divisors of k is a multiple of 24.

Original entry on oeis.org

14, 15, 23, 30, 33, 35, 42, 46, 47, 51, 54, 55, 56, 60, 62, 66, 69, 70, 71, 77, 78, 87, 92, 94, 95, 102, 105, 110, 114, 115, 119, 120, 123, 126, 132, 135, 138, 140, 141, 142, 143, 154, 155, 158, 159, 161, 165, 167, 168, 174, 177, 182, 184, 186, 187, 188
Offset: 1

Views

Author

Omar E. Pol, Feb 20 2012

Keywords

Examples

			33 is in the sequence because the divisors of 33 are 1, 3, 11, 33 and the sum of divisors of 33 is 1+3+11+33 = A000203(33) = 48 and 48 is a multiple de 24 because 48 divided by 24 gives a positive integer.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[188], Mod[DivisorSigma[1, #], 24] == 0 &] (* T. D. Noe, Feb 27 2012 *)

A207374 Composites of the form 24n - 1.

Original entry on oeis.org

95, 119, 143, 215, 287, 335, 407, 455, 527, 551, 575, 623, 671, 695, 767, 791, 815, 935, 959, 1007, 1055, 1079, 1127, 1175, 1199, 1247, 1271, 1295, 1343, 1391, 1415, 1463, 1535, 1631, 1655, 1679, 1703, 1727, 1751, 1775, 1799, 1895, 1919, 1943, 1967, 1991, 2015
Offset: 1

Views

Author

Omar E. Pol, Feb 18 2012

Keywords

Comments

Also denominators that are composite numbers A002808 in the Bruinier-Ono formula for the partition function (see A183010 and A183011).
The union of A134517 and this sequence gives A183010.

Crossrefs

Programs

Formula

A002808 INTERSECT A183010.

A350052 Third part of the trisection of A017077: a(n) = 17 + 24*n.

Original entry on oeis.org

17, 41, 65, 89, 113, 137, 161, 185, 209, 233, 257, 281, 305, 329, 353, 377, 401, 425, 449, 473, 497, 521, 545, 569, 593, 617, 641, 665, 689, 713, 737, 761, 785, 809, 833, 857, 881, 905, 929, 953, 977, 1001, 1025, 1049, 1073
Offset: 0

Views

Author

Wolfdieter Lang, Dec 11 2021

Keywords

Comments

The trisection of A017077 = {1 + 8*k}A103214%20=%20%7B1%20+%2024*n%7D">{k>=0} gives A103214 = {1 + 24*n}{n>=0}, 3*A017101 = {3*(3 + 8*n)}{n >= 0} and {a(n)}{n>=0}. These three sequences are congruent to 1 modulo 8 and to 1, 3, and 5 modulo 6, respectively.

Crossrefs

Programs

Formula

a(n) = 17 + 24*n = 17 + A008606(n), for n >= 0
a(n) = 2*a(n-1) - a(n-2), for n >= 1, with a(-1) = -7, a(0) = 17.
G.f.: (17 + 7*x)/(1-x)^2.
E.g.f.: (17 + 24*x)*exp(x).
Previous Showing 21-30 of 31 results. Next