cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A032194 Number of necklaces with 9 black beads and n-9 white beads.

Original entry on oeis.org

1, 1, 5, 19, 55, 143, 335, 715, 1430, 2704, 4862, 8398, 14000, 22610, 35530, 54484, 81719, 120175, 173593, 246675, 345345, 476913, 650325, 876525, 1168710, 1542684, 2017356, 2615104, 3362260, 4289780, 5433736, 6835972
Offset: 9

Views

Author

Keywords

Comments

The g.f. is Z(C_9,x)/x^9, the 9-variate cycle index polynomial for the cyclic group C_9, with substitution x[i]->1/(1-x^i), i=1,...,9. Therefore by Polya enumeration a(n+9) is the number of cyclically inequivalent 9-necklaces whose 9 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_9,x). See the comment in A032191 on the equivalence of this problem with the one given in the `Name' line. - Wolfdieter Lang, Feb 15 2005

Crossrefs

Programs

  • Mathematica
    k = 9; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)

Formula

"CIK[ 9 ]" (necklace, indistinct, unlabeled, 9 parts) transform of 1, 1, 1, 1...
G.f.: (x^9)*(1-5*x+14*x^2-18*x^3+21*x^4-21*x^5+25*x^6 -21*x^7 +21*x^8 -18*x^9 +14*x^10 -5*x^11 +x^12) / ((1-x)^6*(1-x^3)^2*(1-x^9)).
G.f.: (1/9)*x^9*(1/(1-x)^9+2/(1-x^3)^3+6/(1-x^9)^1). - Herbert Kociemba, Oct 22 2016

A032801 Number of unordered sets a, b, c, d of distinct integers from 1..n such that a+b+c+d = 0 (mod n).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 5, 9, 14, 22, 30, 42, 55, 73, 91, 115, 140, 172, 204, 244, 285, 335, 385, 445, 506, 578, 650, 734, 819, 917, 1015, 1127, 1240, 1368, 1496, 1640, 1785, 1947, 2109, 2289, 2470, 2670, 2870, 3090, 3311, 3553, 3795, 4059, 4324, 4612, 4900, 5212, 5525
Offset: 1

Views

Author

Keywords

Comments

From Petros Hadjicostas, Jul 12 2019: (Start)
By reading carefully the proof of Lemma 5.1 (pp. 65-66) in Barnes (1959), we see that he actually proved a general result (even though he does not state it in the lemma). For 1 <= k <= n, let T(n, k) be the number of unordered sets b_1, b_2, ..., b_k of k distinct integers from 1..n such that b_1 + b_2 + ... + b_k = 0 (mod n). The proof of Lemma 5.1 in the paper implies that T(n, k) = (1/n) * Sum_{s | gcd(n, k)} (-1)^(k - (k/s)) * phi(s) * binomial(n/s, k/s).
For fixed k >= 1, the g.f. of the sequence (T(n, k): n >= 1) (with T(n, k) = 0 for 1 <= n < k) is (x^k/k) * Sum_{s|k} phi(s) * (-1)^(k - (k/s)) / (1 - x^s)^(k/s).
For k = 4, we get T(n, k=4) = (1/n) * Sum_{d | gcd(n, 4)} (-1)^(4/s) * phi(d) * binomial(n/d, 4/d), which agrees with Barnes' 3-part formula in Lemma 5.1 and with the formula in N. J. A. Sloane's Maple program below. It also agrees with Colin Barker's formula below.
For k = 4, the g.f. is (x^4/4) * Sum_{s|4} phi(s) * (-1)^(4/s) /(1 - x^s)^(4/s), which agrees with Herbert Kociemba's g.f. below.
Barnes' (1959) formula is a special case of Theorem 4 (p. 66) in Ramanathan (1944). If R(n, k, v) is the number of unordered sets b_1, b_2, ..., b_k of k distinct integers from 1..n such that b_1 + b_2 + ... + b_k = v (mod n), then he proved that R(n, k, v) = (1/n) * Sum_{s | gcd(n,k)} (-1)^(k - (k/s)) * binomial(n/s, k/s) * C_s(v), where C_s(v) = A054533(s, v) is Ramanujan's sum (even though it was discovered first around 1900 by the Austrian mathematician R. D. von Sterneck).
Because C_s(v = 0) = phi(s), we get Barnes' (implicit) result; i.e., R(n, k, v=0) = T(n, k) and a(n) = R(n, k=4, v=0) = T(n, k=4).
For k=2, we have R(n, k=2, v=0) = T(n, k=2) = A004526(n-1) for n >= 1. For k=3, we have R(n, k=3, v=0) = T(n, k=3) = A058212(n) for n >= 1. For k=5, we have R(n, k=5, v=0) = T(n, k=5) = A008646(n-5) for n >= 5.
(End)

References

  • E. V. McLaughlin, Numbers of factorizations in non-unique factorial domains, Senior Thesis, Allegeny College, Meadville, PA, April 2004.

Crossrefs

Programs

  • Maple
    f := n-> if n mod 2 <> 0 then (n-1)*(n-2)*(n-3)/24 elif n mod 4 = 0 then (n-4)*(n^2-2*n+6)/24 else (n-2)*(n^2-4*n+6)/24; fi;
  • Mathematica
    CoefficientList[Series[(x^3 / 4) (1 / (1 - x)^4 + 1 / (1 - x^2)^2 - 2 / (1 - x^4)), {x, 0, 60}],x] (* Vincenzo Librandi, Jul 13 2019 *)

Formula

G.f.: x^5*(1+x-x^2+x^3)/((-1+x)^4*(1+x)^2*(1+x^2)). - Herbert Kociemba, Oct 22 2016
a(n) = (-6 * (4 + 2*(-1)^n + (-i)^n + i^n) + (25 + 3*(-1)^n)*n - 12*n^2 + 2*n^3)/48, where i = sqrt(-1). - Colin Barker, Oct 23 2016
a(n) = -A008610(-n), per formulae of Ralf Stephan (A008610) and C. Barker (above). Also, A008610(n) - a(n+4) = (1+(-1)^signum(n mod 4))/2, i.e., (1,0,0,0,1,0,0,0,...) repeating (offset 0). - Gregory Gerard Wojnar, Jul 09 2022

Extensions

Offset changed by David A. Corneth, Oct 23 2016

A053733 a(n) = ceiling(binomial(n,9)/n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 19, 55, 143, 334, 715, 1430, 2702, 4862, 8398, 13997, 22610, 35530, 54480, 81719, 120175, 173587, 246675, 345345, 476905, 650325, 876525, 1168700, 1542684, 2017356, 2615092, 3362260, 4289780, 5433722
Offset: 1

Views

Author

N. J. A. Sloane, Mar 25 2000

Keywords

Crossrefs

Cf. Sequences of the form ceiling(binomial(n,k)/n): A000012 (k=1), A004526 (k=2), A007997 (k=3), A008646 (k=5), A032192 (k=7), A053618 (k=4), A053643 (k=6), A053731 (k=8), this sequence (k=9).

Programs

  • Magma
    [Ceiling(Binomial(n,9)/n): n in [1..40]]; // G. C. Greubel, Sep 06 2019
    
  • Maple
    seq(ceil(binomial(n,9)/n), n=1..40); # G. C. Greubel, Sep 06 2019
  • Mathematica
    Table[Ceiling[Binomial[n, 9]/n], {n, 40}] (* G. C. Greubel, Sep 06 2019 *)
  • PARI
    vector(40, n, ceil(binomial(n,9)/n)) \\ G. C. Greubel, Sep 06 2019
    
  • Sage
    [ceil(binomial(n,9)/n) for n in (1..40)] # G. C. Greubel, Sep 06 2019

A032195 Number of necklaces with 10 black beads and n-10 white beads.

Original entry on oeis.org

1, 1, 6, 22, 73, 201, 504, 1144, 2438, 4862, 9252, 16796, 29414, 49742, 81752, 130752, 204347, 312455, 468754, 690690, 1001603, 1430715, 2016144, 2804880, 3856892, 5245128, 7060984, 9414328, 12440668, 16301164
Offset: 10

Views

Author

Keywords

Comments

The g.f. is Z(C_10,x)/x^10, the 10-variate cycle index polynomial for the cyclic group C_10, with substitution x[i]->1/(1-x^i), i=1,...,10. By Polya enumeration, a(n+10) is the number of cyclically inequivalent 10-necklaces whose 10 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_10,x). See the comment in A032191 on the equivalence of this problem with the one given in the `Name' line. - Wolfdieter Lang, Feb 15 2005

Crossrefs

Programs

  • Mathematica
    k = 10; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)

Formula

"CIK[ 10 ]" (necklace, indistinct, unlabeled, 10 parts) transform of 1, 1, 1, 1...
G.f.: (x^10)*(1-3*x+4*x^2+12*x^3-8*x^4-x^5+31*x^6-4*x^8+16*x^9 +11*x^10 +3*x^11+8*x^12+4*x^13+4*x^14+x^15+x^16) /((1-x)^4*(1-x^2)^4 *(1-x^5)*(1-x^10)).
G.f.: (1/10)*x^10*(1/(1 - x)^10 + 1/(1 - x^2)^5 + 4/(1 - x^5)^2 + 4/(1 - x^10)^1). - Herbert Kociemba, Oct 22 2016

A032196 Number of necklaces with 11 black beads and n-11 white beads.

Original entry on oeis.org

1, 1, 6, 26, 91, 273, 728, 1768, 3978, 8398, 16796, 32066, 58786, 104006, 178296, 297160, 482885, 766935, 1193010, 1820910, 2731365, 4032015, 5864750, 8414640, 11920740, 16689036, 23107896, 31666376, 42975796
Offset: 11

Views

Author

Keywords

Comments

The g.f. is Z(C_11,x)/x^11, the 11-variate cycle index polynomial for the cyclic group C_11, with substitution x[i]->1/(1-x^i), i=1..11. By Polya enumeration, a(n+11) is the number of cyclically inequivalent 11-necklaces whose 11 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_11,x). See the comment in A032191 on the equivalence of this problem with the one given in the `Name' line. - Wolfdieter Lang, Feb 15 2005

Crossrefs

Programs

  • Mathematica
    k = 11; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)
    DeleteCases[CoefficientList[Series[(x^11) (1 - 9 x + 41 x^2 - 109 x^3 + 191 x^4 - 229 x^5 + 191 x^6 - 109 x^7 + 41 x^8 - 9 x^9 + x^10)/((1 - x)^10 (1 - x^11)), {x, 0, 39}], x], 0] (* Michael De Vlieger, Oct 10 2016 *)

Formula

"CIK[ 11 ]" (necklace, indistinct, unlabeled, 11 parts) transform of 1, 1, 1, 1...
G.f.: (x^11) * (1 - 9*x + 41*x^2 - 109*x^3 + 191*x^4 - 229*x^5 + 191*x^6 - 109*x^7 + 41*x^8 - 9*x^9 + x^10) / ((1-x)^10 * (1-x^11)).
a(n) = ceiling(binomial(n, 11)/n) (conjecture Wolfdieter Lang).
From Herbert Kociemba, Oct 11 2016: (Start)
This conjecture indeed is true.
Sketch of proof:
There are binomial(n,11) ways to place the 11 black beads in the necklace with n beads. If n is not divisible by 11 there are no necklaces with a rotational symmetry. So exactly n necklaces are equivalent up to rotation and there are binomial(n,11)/n = ceiling(binomial(n,11)/n) equivalence classes.
If n is divisible by 11 the only way to get a necklace with rotational symmetry is to space out the 11 black beads evenly. There are n/11 ways to do this and all ways are equivalent up to rotation. So there are binomial(n,11) - n/11 unsymmetric necklaces which give binomial(n,11)/n - 1/11 equivalence classes. If we add the single symmetric equivalence class we get Binomial(n,11)/n - 1/11 + 1 which also is ceiling(binomial(n,11)/n). (End)
G.f.: (10/(1 - x^11) + 1/(1 - x)^11)*x^11/11. - Herbert Kociemba, Oct 16 2016

A032197 Number of necklaces with 12 black beads and n-12 white beads.

Original entry on oeis.org

1, 1, 7, 31, 116, 364, 1038, 2652, 6310, 14000, 29414, 58786, 112720, 208012, 371516, 643856, 1086601, 1789515, 2883289, 4552275, 7056280, 10752060, 16128424, 23841480, 34769374, 50067108, 71250060, 100276894, 139672312
Offset: 12

Views

Author

Keywords

Comments

The g.f. is Z(C_12,x)/x^12, the 12-variate cycle index polynomial for the cyclic group C_12, with substitution x[i]->1/(1-x^i), i=1,...,12. Therefore by Polya enumeration a(n+12) is the number of cyclically inequivalent 12-necklaces whose 12 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_12,x). See the comment in A032191 on the equivalence of this problem with the one given in the `Name' line. - Wolfdieter Lang, Feb 15 2005

Crossrefs

Programs

  • Mathematica
    k = 12; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)

Formula

"CIK[ 12 ]" (necklace, indistinct, unlabeled, 12 parts) transform of 1, 1, 1, 1...
G.f.: (x^12)*(1-3*x+7*x^2+9*x^3+18*x^4+38*x^5+72*x^6+92*x^7+168*x^8+160*x^9+238*x^10+230*x^11+296*x^12+234*x^13+330*x^14+248*x^15+284*x^16+238*x^17+230*x^18+166*x^19+172*x^20+78*x^21+80*x^22+38*x^23+21*x^24+7*x^25+3*x^26+x^27) /((1+x)*(1-x)*(1-x^2)*(1-x^3)*(1-x)^5*(1+x+x^2)*(1-x^4)^2*(1-x^6)*(1-x^12)). - Wolfdieter Lang, Feb 15 2005 (see comment)
G.f.: 1/12 x^12 ((1 - x)^-12 + (1 - x^2)^-6 + 2 (1 - x^3)^-4 + 2 (1 - x^4)^-3 + 2 (1 - x^6)^-2 + 4 (1 - x^12)^-1). - Herbert Kociemba, Oct 22 2016
Previous Showing 11-16 of 16 results.