cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A136756 Leading digit of n! in base 5.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 1, 1, 2, 4, 1, 4, 1, 1, 2, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 2, 3, 4, 1, 2, 3, 1, 2, 4, 1, 2, 1, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 2, 1, 2, 1, 4, 2, 1, 3, 2, 1, 3, 2, 1, 4, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 4, 2, 2, 1, 1, 4, 3, 2, 2, 1, 1
Offset: 0

Views

Author

Carl R. White, Jan 21 2008

Keywords

Examples

			a(10) = 1 as 10! = 1412110200_5 which has leading digit 1. - _David A. Corneth_, Jan 15 2021
		

Crossrefs

A136757 Leading digit of n! in base 6.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 3, 3, 5, 1, 2, 3, 1, 2, 1, 2, 1, 3, 1, 5, 3, 1, 1, 4, 2, 1, 1, 1, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 5, 1, 1, 1, 2, 3, 4, 1, 1, 2, 3, 5, 1, 2, 3, 5, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 5, 1, 3, 1, 2, 5, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 2
Offset: 0

Views

Author

Carl R. White, Jan 21 2008

Keywords

Examples

			a(10) = 2 as 10! = 205440000_6 which has leading digit 2. - _David A. Corneth_, Jan 15 2021
		

Crossrefs

Programs

  • Mathematica
    Table[First[IntegerDigits[n!,6]],{n,0,100}] (* Harvey P. Dale, Dec 13 2011 *)

A136764 a(n) = leading digit of n! in base 14.

Original entry on oeis.org

1, 1, 2, 6, 1, 8, 3, 1, 1, 9, 6, 5, 4, 4, 4, 4, 5, 6, 8, 10, 1, 1, 2, 4, 7, 13, 1, 3, 6, 1, 2, 4, 10, 1, 4, 11, 2, 5, 1, 2, 8, 1, 5, 1, 3, 11, 2, 9, 2, 7, 1, 7, 1, 7, 2, 7, 2, 9, 2, 11, 3, 1, 4, 1, 7, 2, 11, 3, 1, 6, 2, 11, 4, 1, 8, 3, 1, 6, 2, 1, 6, 2, 1, 6, 2, 1, 7, 3, 1, 9, 4, 2, 13, 6, 3, 1, 9, 4, 2, 1
Offset: 0

Views

Author

Carl R. White, Jan 21 2008

Keywords

Examples

			a(10) = 6 as 10! = 6106640_14 which has leading digit 6. - _David A. Corneth_, Jan 15 2021
		

Crossrefs

Programs

A136765 a(n) = leading digit of n! in base 15.

Original entry on oeis.org

1, 1, 2, 6, 1, 8, 3, 1, 11, 7, 4, 3, 2, 2, 2, 2, 2, 2, 3, 4, 5, 7, 11, 1, 1, 3, 5, 9, 1, 2, 4, 9, 1, 3, 6, 1, 2, 6, 1, 2, 7, 1, 3, 10, 2, 6, 1, 4, 12, 2, 9, 2, 7, 1, 6, 1, 5, 1, 5, 1, 5, 1, 6, 1, 7, 2, 10, 2, 13, 4, 1, 6, 1, 9, 3, 1, 5, 1, 9, 3, 1, 6, 2, 12, 4, 1, 10, 3, 1, 9, 3, 1, 9, 3, 1, 10, 4, 1, 12, 5
Offset: 0

Views

Author

Carl R. White, Jan 21 2008

Keywords

Examples

			a(10) = 4 as 10! = 41110300_15 which has leading digit 4. - _David A. Corneth_, Jan 15 2021
		

Crossrefs

Programs

A141053 Most-significant decimal digit of Fibonacci(5n+3).

Original entry on oeis.org

2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2
Offset: 0

Views

Author

Paul Curtz, Aug 01 2008

Keywords

Comments

Leading digit of A134490(n).
From Johannes W. Meijer, Jul 06 2011: (Start)
The leading digit d, 1 <= d <= 9, of A141053 follows Benford’s Law. This law states that the probability for the leading digit is p(d) = log_10(1+1/d), see the examples.
We observe that the last digit of A134490(n), i.e. F(5*n+3) mod 10, leads to the Lucas sequence A000032(n) (mod 10), i.e. a repetitive sequence of 12 digits [2, 1, 3, 4, 7, 1, 8, 9, 7, 6, 3, 9] with p(0) = p(5) = 0, p(1) = p(3) = p(7) = p(9) = 1/6 and p(2) = p(4) = p(6) = p(8) = 1/12. This does not obey Benford’s Law, which would predict that the last digit would satisfy p(d) = 1/10, see the links. (End)

Examples

			From _Johannes W. Meijer_, Jul 06 2011: (Start)
d     p(N=2000) p(N=4000) p(N=6000) p(Benford)
1      0.29900   0.29950   0.30033   0.30103
2      0.17700   0.17675   0.17650   0.17609
3      0.12550   0.12525   0.12517   0.12494
4      0.09650   0.09675   0.09700   0.09691
5      0.07950   0.07950   0.07933   0.07918
6      0.06700   0.06675   0.06700   0.06695
7      0.05800   0.05825   0.05800   0.05799
8      0.05150   0.05125   0.05100   0.05115
9      0.04600   0.04600   0.04567   0.04576
Total  1.00000   1.00000   1.00000   1.00000 (End)
		

Crossrefs

Cf. A000045 (F(n)), A008963 (Initial digit F(n)), A105511-A105519, A003893 (F(n) mod 10), A130893, A186190 (First digit tribonacci), A008952 (Leading digit 2^n), A008905 (Leading digit n!), A045510, A112420 (Leading digit Collatz 3*n+1 starting with 1117065), A007524 (log_10(2)), A104140 (1-log_10(9)). - Johannes W. Meijer, Jul 06 2011

Programs

  • Maple
    A134490 := proc(n) combinat[fibonacci](5*n+3) ; end proc:
    A141053 := proc(n) convert(A134490(n),base,10) ; op(-1,%) ; end proc:
    seq(A141053(n),n=0..70) ; # R. J. Mathar, Jul 04 2011
  • Mathematica
    Table[IntegerDigits[Fibonacci[5n+3]][[1]],{n,0,70}] (* Harvey P. Dale, Jun 22 2025 *)

Formula

a(n) = floor(F(5*n+3)/10^(floor(log(F(5*n+3))/log(10)))). - Johannes W. Meijer, Jul 06 2011
For n>0, a(n) = floor(10^{alpha*n+beta}), where alpha=5*log_10(phi)-1, beta=log_10(1+2/sqrt(5)), {x}=x-floor(x) denotes the fractional part of x, log_10(phi) = A097348, and phi = (1+sqrt(5))/2 = A001622. - Hans J. H. Tuenter, Aug 27 2025

Extensions

Edited by Johannes W. Meijer, Jul 06 2011

A368010 Ordinal transform of the leading digit of the factorial numbers.

Original entry on oeis.org

1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 3, 2, 2, 1, 4, 3, 4, 3, 5, 4, 2, 6, 5, 4, 7, 3, 8, 5, 2, 6, 3, 7, 4, 8, 9, 6, 10, 3, 9, 5, 7, 11, 5, 10, 12, 4, 11, 13, 6, 8, 14, 6, 4, 12, 15, 2, 5, 13, 16, 7, 5, 9, 17, 18, 8, 6, 10, 14, 19, 20, 9, 7, 6, 11, 15, 21, 22, 23, 10
Offset: 0

Views

Author

Alois P. Heinz, Dec 07 2023

Keywords

Comments

n is the a(n)-th nonnegative integer producing value A008905(n).

Examples

			a(11) = 3 because 11! = 39916800 is the third factorial with leading digit 3 after 9! = 362880 and 10! = 3628800.  A008905(k) = 3 for k = 9, 10, 11, ... .
		

Crossrefs

Formula

Ordinal transform of A008905.
a(n) = |{ j in {0..n} : A008905(j) = A008905(n) }|.

A202021 The leading digit of (10^n)!.

Original entry on oeis.org

1, 3, 9, 4, 2, 2, 8, 1, 1, 9, 2, 3, 1, 2, 1, 1, 1, 1, 5, 2, 1, 5, 1, 1, 3, 5, 3, 9, 1, 1, 6, 7, 7, 6, 3, 4, 1, 9, 9, 3, 2, 1, 2, 6, 6, 1, 2, 3, 5, 1, 5, 2, 5, 1, 1, 5, 8, 2, 7, 3, 4, 1, 1, 5, 5, 2, 3, 1, 8, 1, 8, 9, 1, 6, 3, 1, 4, 6, 4, 1, 8, 1, 1, 9, 1, 4, 8, 8, 8, 9, 1, 3, 3, 2, 1, 5, 4, 2, 3, 3, 1, 1, 4, 6, 6
Offset: 0

Views

Author

Robert G. Wilson v, Jan 09 2013

Keywords

Comments

I employed R. Wm. Gosper's approximation (A090583).

Examples

			(10^1)! = 3628800 begins with 3.
(10^6)! begins with 8 and (10^100)! begins with 1.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := IntegerPart[ 10^FractionalPart[ N[(n*Log[n] - n + (1/2) Log[2 Pi*n + 1/3])/Log[10], 150]]]; f[1] = 1; Table[ f[10^n], {n, 0, 104}]
  • PARI
    a(n)=my(g=lngamma(10^n+1)/log(10));g-=g\1;10^g\1 \\ Charles R Greathouse IV, Jan 09 2013

A332842 Initial digit of n-th superfactorial.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 2, 1, 5, 1, 6, 2, 1, 7, 6, 9, 1, 6, 4, 5, 1, 6, 7, 1, 1, 1, 7, 7, 2, 2, 5, 4, 1, 1, 3, 3, 1, 1, 8, 1, 1, 4, 6, 4, 1, 1, 7, 1, 2, 1, 4, 6, 5, 2, 5, 6, 4, 1, 4, 6, 5, 2, 8, 1, 2, 1, 9, 3, 8, 1, 1, 1, 9, 4, 1, 3, 6, 9, 1, 9, 6, 3, 1, 7, 2, 6, 1, 3, 6, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2
Offset: 0

Views

Author

Eder Vanzei, Feb 26 2020

Keywords

Examples

			a(6) = 2 because A000178(6) = 24883200.
		

Crossrefs

Programs

  • PARI
    a(n) = digits(prod(k=2, n, k!))[1]; \\ Michel Marcus, Feb 26 2020
    
  • Python
    def A332842(n):
        m, k = 1, 1
        for i in range(2,n+1):
            k *= i
            m *= k
        return int(str(m)[0]) # Chai Wah Wu, Mar 17 2020

Formula

a(n) = A000030(A000178(n)).

A056113 Most significant digit of n-th primorial A002110.

Original entry on oeis.org

1, 2, 6, 3, 2, 2, 3, 5, 9, 2, 6, 2, 7, 3, 1, 6, 3, 1, 1, 7, 5, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 7, 1, 1, 2, 3, 5, 9, 1, 2, 5, 1, 1, 3, 7, 1, 3, 8, 1, 4, 1, 2, 6, 1, 4, 1, 3, 8, 2, 6, 2, 6, 1, 6, 1, 6, 2, 7, 2, 9, 3, 1, 4, 1, 6, 2, 1, 4, 1, 6, 2, 1, 5, 2, 1, 4, 2, 1, 4, 2, 1, 5, 2, 1, 6, 3, 1, 8, 4, 2, 1, 8, 4
Offset: 0

Views

Author

Robert G. Wilson v, Jul 28 2000

Keywords

Crossrefs

Cf. A008905.

Programs

  • Mathematica
    Do[p = Product[Prime[m], {m, 1, n}]; Print[IntegerPart[p/10^Floor[N[Log[10, p], 12]]]], {n, 0, 121}]
Previous Showing 21-29 of 29 results.