A328054
Expansion of e.g.f. log(1 + x / (1 - x)^2).
Original entry on oeis.org
0, 1, 3, 8, 18, 24, 0, 720, 15120, 161280, 1088640, 3628800, 0, 479001600, 18681062400, 348713164800, 3923023104000, 20922789888000, 0, 6402373705728000, 364935301226496000, 9731608032706560000, 153272826515128320000, 1124000727777607680000, 0, 620448401733239439360000
Offset: 0
-
b:= proc(n) option remember; n*n! end:
a:= proc(n) option remember; `if`(n=0, 0, b(n)-
add(binomial(n, j)*j*b(n-j)*a(j), j=1..n-1)/n)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 04 2019
-
nmax = 25; CoefficientList[Series[Log[1 + x/(1 - x)^2], {x, 0, nmax}], x] Range[0, nmax]!
Join[{0}, Table[2 (n - 1)! (1 - Cos[Pi n/3]), {n, 1, 25}]]
-
my(x='x+O('x^30)); concat(0, Vec(serlaplace(log(1 + x / (1 - x)^2)))) \\ Michel Marcus, Oct 04 2019
A337590
a(0) = 0; a(n) = n - (1/n) * Sum_{k=1..n-1} binomial(n,k)^2 * (n-k) * k * a(k).
Original entry on oeis.org
0, 1, 0, -3, 28, -215, -174, 90223, -3840472, 103719537, 429704110, -357346077869, 35100093531900, -2005608652057595, -24108041118593418, 27881407632242902515, -4876442148527153942384, 474102062424164433715937, 12637408141631813073125094, -18867461801192524662360616421
Offset: 0
-
a[0] = 0; a[n_] := a[n] = n - (1/n) Sum[Binomial[n, k]^2 (n - k) k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 19}]
nmax = 19; CoefficientList[Series[Log[1 + Sqrt[x] BesselI[1, 2 Sqrt[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2
A307126
Expansion of e.g.f. log(1 + log(1 + x*exp(x))).
Original entry on oeis.org
0, 1, 0, -2, 5, 3, -88, 362, 534, -17363, 103354, 175690, -9218328, 80446715, 46936658, -10553663682, 136009808336, -210505566343, -22766371152222, 418488315816586, -1679396876267976, -82907733267235305, 2070045795782097506, -13611715282931011890, -463120892871268874832
Offset: 0
-
a:=series(log(1+log(1+x*exp(x))),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Apr 03 2019
-
nmax = 24; CoefficientList[Series[Log[1 + Log[1 + x Exp[x]]], {x, 0, nmax}], x] Range[0, nmax]!
-
my(x = 'x + O('x^30)); Vec(serlaplace(log(1 + log(1 + x*exp(x))))) \\ Michel Marcus, Mar 26 2019
A308484
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. log(1 + Sum_{j>=1} j^k * x^j/j!).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 3, -1, 0, 1, 7, -1, -2, 0, 1, 15, 5, -26, 9, 0, 1, 31, 35, -146, 29, 6, 0, 1, 63, 149, -650, -351, 756, -155, 0, 1, 127, 539, -2642, -5251, 9936, -1793, 232, 0, 1, 255, 1805, -10346, -46071, 83376, 51421, -45744, 3969, 0
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 3, 7, 15, 31, ...
0, -1, -1, 5, 35, 149, ...
0, -2, -26, -146, -650, -2642, ...
0, 9, 29, -351, -5251, -46071, ...
0, 6, 756, 9936, 83376, 559656, ...
0, -155, -1793, 51421, 1623439, 28735405, ...
-
T[n_, k_] := T[n, k] = n^k - Sum[Binomial[n-1,j] * j^k * T[n-j,k], {j,1,n-1}]; Table[T[k, n - k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 12 2021 *)
A320255
a(n) = n! * [x^n] log(1 + exp(x)*(x + (n/2 - 1)*x^2)).
Original entry on oeis.org
0, 1, 1, -1, -26, 39, 3666, -7400, -1488416, 3802113, 1322570530, -4095154284, -2187371499312, 7964242253473, 6052757424558586, -25343867475914910, -25988018018090461664, 123032891453320498449, 163684285184147641156098, -864557405968781387651984, -1448111703094244548802632160
Offset: 0
-
Table[n! SeriesCoefficient[Log[1 + Exp[x] (x + (n/2 - 1) x^2)], {x, 0, n}], {n, 0, 20}]
A368176
Expansion of e.g.f. -log(1 - x * exp(2*x)).
Original entry on oeis.org
0, 1, 5, 26, 182, 1704, 19992, 281392, 4620464, 86707584, 1830550400, 42940149504, 1107995749632, 31188982438912, 951100528802816, 31234626965637120, 1099029746752575488, 41248797730190032896, 1644909773059509682176
Offset: 0
A368177
Expansion of e.g.f. -log(1 - x * exp(3*x)).
Original entry on oeis.org
0, 1, 7, 47, 402, 4569, 65298, 1119789, 22397112, 511972065, 13166163630, 376208954109, 11824734538620, 405454640476833, 15061050695642994, 602494304797738845, 25823425094211472272, 1180601869774944168513, 57348495330075309426390
Offset: 0
-
With[{nn=20},CoefficientList[Series[-Log[1-x Exp[3x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 10 2024 *)
-
a(n) = sum(k=1, n, (3*k)^(n-k)*(k-1)!*binomial(n, k));
A344469
Triangle read by rows: T(n, k) (0 <= k <= n) = [x^k] x^n * n! * [t^n] x*(1 + t)/(x*exp(-t) - t).
Original entry on oeis.org
1, 1, 2, 2, 6, 3, 6, 24, 24, 4, 24, 120, 180, 80, 5, 120, 720, 1440, 1080, 240, 6, 720, 5040, 12600, 13440, 5670, 672, 7, 5040, 40320, 120960, 168000, 107520, 27216, 1792, 8, 40320, 362880, 1270080, 2177280, 1890000, 774144, 122472, 4608, 9
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 2;
[2] 2, 6, 3;
[3] 6, 24, 24, 4;
[4] 24, 120, 180, 80, 5;
[5] 120, 720, 1440, 1080, 240, 6;
[6] 720, 5040, 12600, 13440, 5670, 672, 7;
[7] 5040, 40320, 120960, 168000, 107520, 27216, 1792, 8;
[8] 40320, 362880, 1270080, 2177280, 1890000, 774144, 122472, 4608, 9.
-
gf := x*(1+t)/(x*exp(-t)-t): ser := series(gf,t,12):
seq(seq(coeff(expand(x^n*n!*coeff(ser,t,n)),x,k),k=0..n),n=0..8);
-
(* rows[n], n[0..oo] *)
n=12;r={};For[k=0,kDetlef Meya, Jul 31 2023 *)
Comments