cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A180731 Smallest power of 23 that begins with n.

Original entry on oeis.org

1, 23, 3404825447, 41426511213649, 529, 6436343, 78310985281, 865004941741938633917747707002884268046728983, 952809757913927, 10524515126174167358877236351104092889324551536161
Offset: 1

Views

Author

Daniel Mondot, Sep 18 2010

Keywords

Crossrefs

A319074 a(n) is the sum of the first n nonnegative powers of the n-th prime.

Original entry on oeis.org

1, 4, 31, 400, 16105, 402234, 25646167, 943531280, 81870575521, 15025258332150, 846949229880161, 182859777940000980, 23127577557875340733, 1759175174860440565844, 262246703278703657363377, 74543635579202247026882160, 21930887362370823132822661921, 2279217547342466764922495586798
Offset: 1

Views

Author

Omar E. Pol, Sep 11 2018

Keywords

Examples

			For n = 4 the 4th prime is 7 and the sum of the first four nonnegative powers of 7 is 7^0 + 7^1 + 7^2 + 7^3 = 1 + 7 + 49 + 343 = 400, so a(4) = 400.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, prime(n)^k); \\ Michel Marcus, Sep 13 2018

Formula

a(n) = Sum_{k=0..n-1} A000040(n)^k.
a(n) = Sum_{k=0..n-1} A319075(k,n).
a(n) = (A000040(n)^n - 1)/(A000040(n) - 1).
a(n) = (A062457(n) - 1)/A006093(n).
a(n) = A069459(n)/A006093(n).
a(n) = A000203(A000040(n)^(n-1)).
a(n) = A000203(A093360(n)).

A319076 Square array T(n,k) read by antidiagonal upwards in which column k lists the partial sums of the powers of the k-th prime, n >= 0, k >= 1.

Original entry on oeis.org

1, 3, 1, 7, 4, 1, 15, 13, 6, 1, 31, 40, 31, 8, 1, 63, 121, 156, 57, 12, 1, 127, 364, 781, 400, 133, 14, 1, 255, 1093, 3906, 2801, 1464, 183, 18, 1, 511, 3280, 19531, 19608, 16105, 2380, 307, 20, 1, 1023, 9841, 97656, 137257, 177156, 30941, 5220, 381, 24, 1, 2047, 29524, 488281, 960800, 1948717
Offset: 0

Views

Author

Omar E. Pol, Sep 09 2018

Keywords

Comments

T(n,k) is also the sum of the divisors of the n-th nonnegative power of the k-th prime, n >= 0, k >= 1.

Examples

			The corner of the square array is as follows:
         A126646 A003462 A003463  A023000    A016123    A091030     A091045
A000012        1,      1,      1,       1,         1,         1,          1, ...
A008864        3,      4,      6,       8,        12,        14,         18, ...
A060800        7,     13,     31,      57,       133,       183,        307, ...
A131991       15,     40,    156,     400,      1464,      2380,       5220, ...
A131992       31,    121,    781,    2801,     16105,     30941,      88741, ...
A131993       63,    364,   3906,   19608,    177156,    402234,    1508598, ...
.......      127,   1093,  19531,  137257,   1948717,   5229043,   25646167, ...
.......      255,   3280,  97656,  960800,  21435888,  67977560,  435984840, ...
.......      511,   9841, 488281, 6725601, 235794769, 883708281, 7411742281, ...
...
		

Crossrefs

Programs

  • PARI
    T(n, k) = sigma(prime(k)^n); \\ Michel Marcus, Sep 13 2018

Formula

T(n,k) = A000203(A000040(k)^n).
T(n,k) = Sum_{j=0..n} A000040(k)^j.
T(n,k) = Sum_{j=0..n} A319075(j,k).
T(n,k) = (A000040(k)^(n+1) - 1)/(A000040(k) - 1).
T(n,k) = (A000040(k)^(n+1) - 1)/A006093(k).

A339794 a(n) is the least integer k satisfying rad(k)^2 < sigma(k) and whose prime factors set is the same as the prime factors set of A005117(n+1).

Original entry on oeis.org

4, 9, 25, 18, 49, 80, 121, 169, 112, 135, 289, 361, 441, 352, 529, 416, 841, 360, 961, 891, 1088, 875, 1369, 1216, 1053, 1681, 672, 1849, 1472, 2209, 2601, 2809, 3025, 3249, 1856, 3481, 3721, 1984, 4225, 1584, 4489, 4761, 1960, 5041, 5329, 4736, 5929, 2496, 6241
Offset: 1

Views

Author

Michel Marcus, Dec 17 2020

Keywords

Comments

Equivalently, subsequence of terms of A339744 excluding terms whose prime factor set has already been encountered.
a(n) = A005117(n + 1)^2 when A005117(n + 1) is prime. Proof: if A005117(n + 1) is a prime p then rad(A005117(n + 1))^2 = rad(p)^2 = p^2 and so integers whose prime factors set is the same as the prime factors set of A005117(n + 1) = p are p^m where m >= 1. p^2 > sigma(p^1) = p + 1 but p^2 < sigma(p^2) = p^2 + p + 1. Q.E.D. - David A. Corneth, Dec 19 2020
From Bernard Schott, Jan 19 2021: (Start)
Indeed, a(n) satisfies the double inequality A005117(n+1) < a(n) <= A005117(n+1)^2.
It is also possible that a(n) = A005117(n+1)^2, even when A005117(n+1) is not prime; the smallest such example is for a(13) = 441 = 21^2 = A005117(14)^2. (End)

Examples

			   n  a(n) prime factor set
   1    4  [2]           A000079
   2    9  [3]           A000244
   3   25  [5]           A000351
   4   18  [2, 3]        A033845
   5   49  [7]           A000420
   6   80  [2, 5]        A033846
   7  121  [11]          A001020
   8  169  [13]          A001022
   9  112  [2, 7]        A033847
  10  135  [3, 5]        A033849
  11  289  [17]          A001026
  12  361  [19]          A001029
  13  441  [3, 7]        A033850
  14  352  [2, 11]       A033848
  15  529  [23]          A009967
  16  416  [2, 13]       A288162
  17  841  [29]          A009973
  18  360  [2, 3, 5]     A143207
		

Crossrefs

Cf. A000203 (sigma), A007947 (rad).
Cf. A005117 (squarefree numbers), A027748, A265668, A339744.
Subsequence: A001248 (squares of primes).

Programs

  • PARI
    u(n) = {my(fn=factor(n)[,1]); for (k = n, n^2, my(fk = factor(k)); if (fk[,1] == fn, if (factorback(fk[,1])^2 < sigma(fk), return (k));););}
    lista(nn) = {for (n=2, nn, if (issquarefree(n), print1(u(n), ", ");););}

Formula

a(n) <= A005117(n+1)^2. - David A. Corneth, Dec 19 2020

A013773 a(n) = 23^(3*n + 2).

Original entry on oeis.org

529, 6436343, 78310985281, 952809757913927, 11592836324538749809, 141050039560662968926103, 1716155831334586342923895201, 20880467999847912034355032910567, 254052654154149545721997685422868689
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A009967.

Programs

  • Magma
    [23^(3*n+2): n in [0..10]]; // Vincenzo Librandi, Jun 27 2011
  • Mathematica
    23^(3*Range[0,20]+2) (* or *) NestList[12167#&,529,20] (* Harvey P. Dale, Nov 22 2021 *)

A013906 a(n) = 23^(5*n + 1).

Original entry on oeis.org

23, 148035889, 952809757913927, 6132610415680998648961, 39471584120695485887249589623, 254052654154149545721997685422868689, 1635170022196481349560959748587682926364327, 10524515126174167358877236351104092889324551536161, 67739389260745218861137988047774370539553852007909099223
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 6436343*a(n-1), a(0)=23. - Vincenzo Librandi, May 29 2011
a(n) = A009967(A016861(n)). - Wesley Ivan Hurt, Jan 30 2014
E.g.f.: 23*exp(6436343*x). - Alejandro J. Becerra Jr., Jun 27 2021

A013907 a(n) = 23^(5*n + 2).

Original entry on oeis.org

529, 3404825447, 21914624432020321, 141050039560662968926103, 907846434775996175406740561329, 5843211045545439551605946764725979847, 37608910510519071039902074217516707306379521, 242063847902005849254176436075394136454464685331703
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A009967.

Programs

  • Magma
    [23^(5*n+2): n in [0..10]]; // Vincenzo Librandi, May 29 2011
  • Mathematica
    23^(5*Range[0,10]+2) (* or *) NestList[6436343#&,529,10] (* Harvey P. Dale, Aug 17 2017 *)

Formula

a(n) = 6436343*a(n-1), a(0)=529. - Vincenzo Librandi, May 29 2011
E.g.f.: 529*exp(6436343*x). - Alejandro J. Becerra Jr., Jun 27 2021

A013908 a(n) = 23^(5*n + 3).

Original entry on oeis.org

12167, 78310985281, 504036361936467383, 3244150909895248285300369, 20880467999847912034355032910567, 134393854047545109686936775588697536481, 865004941741938633917747707002884268046728983, 5567468501746134532846058029734065138452687762629169
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A009967.

Programs

Formula

a(n) = 6436343*a(n-1), a(0)=12167. - Vincenzo Librandi, May 29 2011

A013909 a(n) = 23^(5*n + 4).

Original entry on oeis.org

279841, 1801152661463, 11592836324538749809, 74615470927590710561908487, 480250763996501976790165756943041, 3091058643093537522799545838540043339063, 19895113660064588580108197261066338165074766609, 128051775540161094255459334683883498184411818540470887
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A009967.

Programs

  • Magma
    [23^(5*n+4): n in [0..10]]; // Vincenzo Librandi, May 29 2011
  • Mathematica
    23^(5*Range[0,10]+4) (* or *) NestList[6436343#&,279841,10] (* Harvey P. Dale, Jan 15 2016 *)

Formula

a(n) = 6436343*a(n-1), a(0)=279841. - Vincenzo Librandi, May 29 2011

A086874 Seventh power of odd primes.

Original entry on oeis.org

2187, 78125, 823543, 19487171, 62748517, 410338673, 893871739, 3404825447, 17249876309, 27512614111, 94931877133, 194754273881, 271818611107, 506623120463, 1174711139837, 2488651484819, 3142742836021, 6060711605323
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 16 2003

Keywords

Crossrefs

Programs

Previous Showing 11-20 of 38 results. Next