cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A176394 Decimal expansion of 3+2*sqrt(3).

Original entry on oeis.org

6, 4, 6, 4, 1, 0, 1, 6, 1, 5, 1, 3, 7, 7, 5, 4, 5, 8, 7, 0, 5, 4, 8, 9, 2, 6, 8, 3, 0, 1, 1, 7, 4, 4, 7, 3, 3, 8, 8, 5, 6, 1, 0, 5, 0, 7, 6, 2, 0, 7, 6, 1, 2, 5, 6, 1, 1, 1, 6, 1, 3, 9, 5, 8, 9, 0, 3, 8, 6, 6, 0, 3, 3, 8, 1, 7, 6, 0, 0, 0, 7, 4, 1, 6, 2, 2, 9, 2, 3, 7, 3, 5, 1, 4, 4, 9, 7, 1, 5, 1, 3, 5, 1, 2, 5
Offset: 1

Views

Author

Klaus Brockhaus, Apr 16 2010

Keywords

Comments

Continued fraction expansion of 3+2*sqrt(3) is A010696 preceded by 6.
a(n) = A010469(n) for n > 1.
Largest radius of three circles tangent to a circle of radius 1. - Charles R Greathouse IV, Jan 14 2013
For a spinning black hole the phase transition to positive specific heat happens at a point governed by 2*sqrt(3)-3 (according to a discussion on John Baez's blog), and not at the golden ratio as claimed by Paul Davis. - Peter Luschny, Mar 02 2013
In particular: a black hole with J > (2*sqrt(3)-3) Gm^2/c has positive specific heat, and negative specific heat if J is less, where J is its angular momentum, m is its mass, G is the gravitational constant, and c is the speed of light. For a solar mass black hole, this is 4.08 * 10^41 joule-seconds or a rotation every 1.61 days with the sun's inertia. - Charles R Greathouse IV, Sep 20 2013

Examples

			3+2*sqrt(3) = 6.46410161513775458705...
		

Crossrefs

Cf. A002194 (decimal expansion of sqrt(3)), A010469 (decimal expansion of sqrt(12)), A010696 (repeat 2, 6).

Programs

  • Mathematica
    Circs[n_] := With[{r = Sin[Pi/n]/(1 - Sin[Pi/n])}, Graphics[Append[Table[Circle[(r + 1) {Sin[2 Pi k/n], Cos[2 Pi k/n]}, r], {k, n}], {Blue, Circle[{0, 0}, 1]}]]]; Circs[3] (* Charles R Greathouse IV, Jan 14 2013 *)
  • PARI
    3+2*sqrt(3) \\ Charles R Greathouse IV, Jan 14 2013

Formula

Equals Sum_{n>=1} (sqrt(3)/2)^n = (sqrt(3)/2)/(1 - (sqrt(3)/2)). - Fred Daniel Kline, Mar 03 2014

A204067 Decimal expansion of the Fresnel Integral, Integral_{x >= 0} cos(x^3) dx.

Original entry on oeis.org

7, 7, 3, 3, 4, 2, 9, 4, 2, 0, 7, 7, 9, 8, 9, 8, 5, 0, 1, 9, 6, 1, 0, 1, 6, 1, 1, 2, 9, 5, 2, 1, 7, 3, 4, 0, 9, 2, 4, 8, 0, 6, 8, 4, 7, 2, 2, 4, 2, 1, 5, 6, 7, 2, 6, 6, 2, 0, 3, 1, 9, 5, 5, 4, 7, 2, 9, 7, 6, 5, 7, 1, 1, 6, 1, 1, 6, 0, 6, 4, 6, 6, 5, 0, 3, 8, 6, 4, 9, 5, 7, 5, 9, 9, 9, 6, 0
Offset: 0

Views

Author

R. J. Mathar, Jan 10 2013

Keywords

Examples

			0.7733429420779898501961016...
		

Crossrefs

Programs

  • Maple
    evalf(int(cos(x^3),x=0..infinity),120); # Muniru A Asiru, Sep 26 2018
  • Mathematica
    RealDigits[Gamma[1/3]/(2*Sqrt[3]), 10, 120][[1]] (* Amiram Eldar, May 26 2023 *)
  • PARI
    Pi/(3*gamma(2/3)) \\ Gheorghe Coserea, Sep 26 2018
    
  • PARI
    intnum(x=[0, -2/3], [oo, I], cos(x)/x^(2/3))/3 \\ Gheorghe Coserea, Sep 26 2018

Formula

Equals Pi/(3*Gamma(2/3)) = A019670 / A073006.
Equals Gamma(1/3)/(2*sqrt(3)) = A073005 / A010469. - Amiram Eldar, May 26 2023

A343964 Decimal expansion of 18 + 2*sqrt(3).

Original entry on oeis.org

2, 1, 4, 6, 4, 1, 0, 1, 6, 1, 5, 1, 3, 7, 7, 5, 4, 5, 8, 7, 0, 5, 4, 8, 9, 2, 6, 8, 3, 0, 1, 1, 7, 4, 4, 7, 3, 3, 8, 8, 5, 6, 1, 0, 5, 0, 7, 6, 2, 0, 7, 6, 1, 2, 5, 6, 1, 1, 1, 6, 1, 3, 9, 5, 8, 9, 0, 3, 8, 6, 6, 0, 3, 3, 8, 1, 7, 6, 0, 0, 0, 7, 4, 1, 6, 2, 2, 9, 2, 3, 7, 3, 5, 1, 4, 4, 9, 7, 1, 5
Offset: 1

Views

Author

Wesley Ivan Hurt, May 05 2021

Keywords

Comments

Surface area of a rhombicuboctahedron with unit edge length.
Essentially the same sequence of digits as A176394 and A010469. - R. J. Mathar, May 07 2021

Examples

			21.464101615137754587054892683011744733885...
		

Crossrefs

Cf. A343965 (rhombicuboctahedron volume).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 18+2*Sqrt(3);
  • Mathematica
    RealDigits[N[18 + 2*Sqrt[3], 100]][[1]] (* Wesley Ivan Hurt, Nov 12 2022 *)

A387296 Decimal expansion of the third largest dihedral angle, in radians, in a gyroelongated triangular cupola (Johnson solid J_22).

Original entry on oeis.org

2, 5, 3, 4, 6, 0, 0, 1, 4, 9, 7, 1, 5, 1, 2, 6, 1, 9, 3, 0, 9, 1, 5, 0, 2, 8, 1, 0, 2, 1, 0, 2, 1, 0, 7, 0, 2, 1, 4, 9, 8, 3, 0, 3, 2, 9, 1, 9, 3, 5, 1, 5, 3, 6, 3, 6, 8, 8, 4, 3, 4, 6, 4, 6, 4, 1, 3, 6, 2, 5, 9, 5, 0, 3, 8, 5, 3, 4, 7, 9, 8, 9, 3, 8, 8, 4, 6, 2, 6, 1
Offset: 1

Views

Author

Paolo Xausa, Aug 26 2025

Keywords

Comments

This is the dihedral angle between triangular faces in the antiprism part of the solid.
Also the analogous dihedral angle in a gyroelongated triangular bicupola (Johnson solid J_44).

Examples

			2.5346001497151261930915028102102107021498303291935...
		

Crossrefs

Cf. other J_22 dihedral angles: A195698, A387294, A387295, A387297.
Cf. A344076 (J_22 volume), A344077 (J_22 surface area).
Cf. A385256 (J_44 volume), A385257 (J_44 surface area).
Cf. A010469.

Programs

  • Mathematica
    First[RealDigits[ArcCos[(1 - Sqrt[12])/3], 10, 100]] (* or *)
    First[RealDigits[RankedMax[Union[PolyhedronData["J22", "DihedralAngles"]], 3], 10, 100]]

Formula

Equals arccos((1 - 2*sqrt(3))/3) = arccos((1 - A010469)/3).

A387297 Decimal expansion of the smallest dihedral angle, in radians, in a gyroelongated triangular cupola (Johnson solid J_22).

Original entry on oeis.org

1, 7, 2, 6, 1, 2, 0, 6, 6, 2, 2, 9, 4, 6, 7, 3, 4, 6, 9, 4, 2, 6, 9, 4, 3, 4, 0, 3, 0, 9, 7, 0, 5, 0, 2, 7, 7, 3, 4, 1, 4, 6, 8, 6, 9, 1, 0, 5, 3, 9, 0, 3, 0, 8, 3, 9, 4, 4, 9, 7, 0, 3, 7, 0, 0, 6, 3, 8, 6, 5, 2, 6, 3, 0, 5, 3, 7, 5, 7, 7, 6, 1, 8, 6, 8, 7, 5, 4, 7, 7
Offset: 1

Views

Author

Paolo Xausa, Aug 26 2025

Keywords

Comments

This is the dihedral angle between a triangular face and the hexagonal face.

Examples

			1.7261206622946734694269434030970502773414686910539...
		

Crossrefs

Cf. other J_22 dihedral angles: A195698, A387294, A387295, A387296.
Cf. A344076 (J_22 volume), A344077 (J_22 surface area).
Cf. A010469.

Programs

  • Mathematica
    First[RealDigits[ArcCos[1 - 2/Sqrt[3]], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["J22", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(1 - 2*sqrt(3)/3) = arccos(1 - A010469/3).

A194390 Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) = 0, where r=sqrt(12) and < > denotes fractional part.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 28, 30, 32, 34, 36, 38, 40, 56, 58, 60, 62, 64, 66, 68, 84, 86, 88, 90, 92, 94, 96, 112, 114, 116, 118, 120, 122, 124, 140, 142, 144, 146, 148, 150, 152, 168, 170, 172, 174, 176, 178, 180
Offset: 1

Views

Author

Clark Kimberling, Aug 23 2011

Keywords

Comments

Every term is even; see A194368.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[12]; c = 1/2;
    x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
    y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
    t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 400}];
    Flatten[Position[t1, 1]]  (* empty *)
    t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 300}];
    Flatten[Position[t2, 1]]       (* A194390 *)
    t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 100}];
    Flatten[Position[t3, 1]]       (* A194391 *)

A194391 Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) > 0, where r=sqrt(12) and < > denotes fractional part.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 33, 35, 37, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 59, 61, 63, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 89, 91, 93
Offset: 1

Views

Author

Clark Kimberling, Aug 23 2011

Keywords

Comments

See A194368.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[12]; c = 1/2;
    x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
    y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
    t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 400}];
    Flatten[Position[t1, 1]]  (* empty *)
    t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 300}];
    Flatten[Position[t2, 1]]       (* A194390 *)
    t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 100}];
    Flatten[Position[t3, 1]]       (* A194391 *)

A343199 Decimal expansion of 6+2*sqrt(3).

Original entry on oeis.org

9, 4, 6, 4, 1, 0, 1, 6, 1, 5, 1, 3, 7, 7, 5, 4, 5, 8, 7, 0, 5, 4, 8, 9, 2, 6, 8, 3, 0, 1, 1, 7, 4, 4, 7, 3, 3, 8, 8, 5, 6, 1, 0, 5, 0, 7, 6, 2, 0, 7, 6, 1, 2, 5, 6, 1, 1, 1, 6, 1, 3, 9, 5, 8, 9, 0, 3, 8, 6, 6, 0, 3, 3, 8, 1, 7, 6, 0, 0, 0, 7, 4, 1, 6, 2, 2, 9, 2, 3, 7, 3, 5, 1, 4, 4, 9, 7, 1, 5, 1, 3, 5
Offset: 1

Views

Author

Wesley Ivan Hurt, May 07 2021

Keywords

Comments

Decimal expansion of the surface area of a cuboctahedron with unit edge length.
Essentially the same sequence of digits as A176394 and A010469. - R. J. Mathar, Jun 10 2021

Examples

			9.4641016151377545870548926830117447338856...
		

Crossrefs

Cf. A020775 (cuboctahedron volume).

Programs

  • Magma
    SetDefaultRealField(RealField(200)); 6+2*Sqrt(3);
  • Mathematica
    RealDigits[N[6 + 2*Sqrt[3], 100]][[1]] (* Wesley Ivan Hurt, Nov 12 2022 *)

A377298 Decimal expansion of the surface area of a truncated cube with unit edge length.

Original entry on oeis.org

3, 2, 4, 3, 4, 6, 6, 4, 3, 6, 3, 6, 1, 4, 8, 9, 5, 1, 7, 2, 6, 7, 5, 1, 5, 7, 3, 7, 3, 5, 2, 8, 1, 2, 1, 6, 7, 6, 7, 2, 1, 6, 7, 3, 0, 1, 2, 1, 4, 4, 1, 3, 8, 1, 3, 4, 2, 3, 1, 7, 7, 0, 8, 1, 4, 7, 9, 2, 6, 5, 5, 7, 7, 5, 3, 6, 2, 8, 8, 4, 5, 4, 0, 3, 6, 6, 9, 4, 2, 7
Offset: 2

Views

Author

Paolo Xausa, Oct 25 2024

Keywords

Examples

			32.4346643636148951726751573735281216767216730121...
		

Crossrefs

Cf. A377299 (volume), A294968 (circumradius), A010503 (midradius - 1), A377296 (Dehn invariant, negated).

Programs

  • Mathematica
    First[RealDigits[2*(6 + Sqrt[72] + Sqrt[3]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedCube", "SurfaceArea"], 10, 100]]

Formula

Equals 2*(6 + 6*sqrt(2) + sqrt(3)) = 2*(6 + 2*A002193 + A002194) = 12 + 2*A010524 + A010469.

A377341 Decimal expansion of the surface area of a truncated octahedron with unit edge length.

Original entry on oeis.org

2, 6, 7, 8, 4, 6, 0, 9, 6, 9, 0, 8, 2, 6, 5, 2, 7, 5, 2, 2, 3, 2, 9, 3, 5, 6, 0, 9, 8, 0, 7, 0, 4, 6, 8, 4, 0, 3, 3, 1, 3, 6, 6, 3, 0, 4, 5, 7, 2, 4, 5, 6, 7, 5, 3, 6, 6, 6, 9, 6, 8, 3, 7, 5, 3, 4, 2, 3, 1, 9, 6, 2, 0, 2, 9, 0, 5, 6, 0, 0, 4, 4, 4, 9, 7, 3, 7, 5, 4, 2
Offset: 2

Views

Author

Paolo Xausa, Oct 25 2024

Keywords

Examples

			26.78460969082652752232935609807046840331366304572...
		

Crossrefs

Cf. A377342 (volume), A020797 (circumradius/10), A152623 (midradius).
Cf. A010469 (analogous for a regular octahedron).
Cf. A002194.

Programs

  • Mathematica
    First[RealDigits[6 + 12*Sqrt[3], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedOctahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 6 + 12*sqrt(3) = 6 + 12*A002194.
Previous Showing 11-20 of 29 results. Next