cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A020841 Decimal expansion of 1/sqrt(84).

Original entry on oeis.org

1, 0, 9, 1, 0, 8, 9, 4, 5, 1, 1, 7, 9, 9, 6, 1, 9, 0, 6, 3, 3, 0, 4, 8, 7, 4, 2, 7, 0, 7, 8, 0, 9, 7, 2, 5, 9, 2, 8, 2, 0, 1, 3, 4, 7, 0, 6, 5, 9, 0, 4, 0, 9, 2, 9, 1, 9, 2, 2, 0, 0, 5, 0, 5, 6, 9, 2, 1, 1, 1, 5, 2, 9, 8, 9, 2, 3, 2, 6, 4, 0, 1, 5, 7, 2, 4, 6, 7, 0, 3, 7, 9, 7, 4, 6, 2, 9, 7, 6
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010477.

Programs

  • Mathematica
    RealDigits[1/Sqrt[84],10,120][[1]] (* Harvey P. Dale, Nov 27 2013 *)

Formula

Equals 1/(2*A010477). - Stefano Spezia, Jan 19 2025

A176106 Decimal expansion of (21+5*sqrt(21))/14.

Original entry on oeis.org

3, 1, 3, 6, 6, 3, 4, 1, 7, 6, 7, 6, 9, 9, 4, 2, 8, 5, 9, 4, 9, 5, 7, 3, 1, 1, 4, 0, 6, 1, 7, 1, 4, 5, 8, 8, 8, 9, 2, 3, 0, 2, 0, 2, 0, 5, 9, 8, 8, 5, 6, 1, 3, 9, 3, 7, 8, 8, 3, 0, 0, 7, 5, 8, 5, 3, 8, 1, 6, 7, 2, 9, 4, 8, 3, 8, 4, 8, 9, 6, 0, 2, 3, 5, 8, 7, 0, 0, 5, 5, 6, 9, 6, 1, 9, 4, 4, 6, 5, 4, 5, 2, 7, 7, 1
Offset: 1

Views

Author

Klaus Brockhaus, Apr 10 2010

Keywords

Comments

Continued fraction expansion of (21+5*sqrt(21))/14 is A010705.

Examples

			(21+5*sqrt(21))/14 = 3.13663417676994285949...
		

Crossrefs

Cf. A010477 (decimal expansion of sqrt(21)), A010705 (repeat 3, 7).

Programs

  • Mathematica
    RealDigits[(21+5*Sqrt[21])/14,10,120][[1]] (* Harvey P. Dale, Apr 27 2017 *)

A367453 Decimal expansion of (-1 + sqrt(21))/10 = 1/A222134.

Original entry on oeis.org

3, 5, 8, 2, 5, 7, 5, 6, 9, 4, 9, 5, 5, 8, 4, 0, 0, 0, 6, 5, 8, 8, 0, 4, 7, 1, 9, 3, 7, 2, 8, 0, 0, 8, 4, 8, 8, 9, 8, 4, 4, 5, 6, 5, 7, 6, 7, 6, 7, 9, 7, 1, 9, 0, 2, 6, 0, 7, 2, 4, 2, 1, 2, 3, 9, 0, 6, 8, 6, 8, 4, 2, 5, 5, 4, 7, 7, 7, 0, 8, 8, 6, 6, 0, 4, 3, 6, 1, 5, 5, 9, 4, 9, 3, 4, 4, 5, 0, 3
Offset: 0

Views

Author

Wolfdieter Lang, Nov 20 2023

Keywords

Comments

Positive root of the minimal polynomial x^2 + 1/5 - 1/5. The negative root is -(1/5)*A222134 = -0.558257569...
c^n = A(-n) + B(-n)*phi21, and A(n) = S21(n+1) - S21(n) = A365824(n), with phi21 = A222134, and B(n) = S21(n) = A015440(n-1), where S21(n) = sqrt(-5)^(n-1)*S(n-1, 1/sqrt(-5)), with the Chebyshev polynomials {S(n, x)} (see A049310).
The formula for negative indices of S is S(-1, 0) = 0 and S(-n, x) = -S(n-2, x) for n >= 2.

Examples

			c = 0.3582575694955840006588047193728008488984456...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(Sqrt[21]-1)/10,10,100]] (* Paolo Xausa, Nov 21 2023 *)
  • PARI
    \\ Works in v2.13 and higher; n = 100 decimal places
    my(n=100); digits(floor(10^(n-1)*(quadgen(84)-1))) \\ Michal Paulovic, Nov 20 2023

Formula

c = 1/phi21 = (1/5)*(1 - phi21), with phi21 = (1 + sqrt(21))/2 = A222134, hence an algebraic number of the real quadratic number field Q(sqrt(21)) but not an algebraic integer like phi24.
Equals (A010477-1)/10. - R. J. Mathar, Nov 21 2023
Equals 2*A222135/10. - Hugo Pfoertner, Mar 21 2024

A017968 Powers of sqrt(21) rounded to nearest integer.

Original entry on oeis.org

1, 5, 21, 96, 441, 2021, 9261, 42439, 194481, 891224, 4084101, 18715702, 85766121, 393029742, 1801088541, 8253624572, 37822859361, 173326116021, 794280046581, 3639848436450, 16679880978201, 76436817165460, 350277500542221, 1605173160474663, 7355827511386641
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010477 (sqrt(21)), A017967.
Bisection gives A009965 (even part).

Programs

  • Magma
    [Round(Sqrt(21)^n): n in [0..30]]; // Vincenzo Librandi, Nov 20 2011
    
  • Maple
    a:= n-> round(sqrt(21)^n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 29 2022
  • Mathematica
    Floor[(Sqrt[21])^Range[0,25]+1/2] (* Harvey P. Dale, Sep 22 2011 *)
  • PARI
    a(n)=round(sqrt(21)^n) \\ Charles R Greathouse IV, Nov 18 2011
    
  • Python
    from math import isqrt
    def A017968(n): return (m:=isqrt(k:=21**n))+int((k-m*(m+1)<<2)>=1) # Chai Wah Wu, Jul 29 2022

A176435 Decimal expansion of (21+5*sqrt(21))/6.

Original entry on oeis.org

7, 3, 1, 8, 8, 1, 3, 0, 7, 9, 1, 2, 9, 8, 6, 6, 6, 7, 2, 1, 5, 6, 7, 0, 5, 9, 9, 4, 7, 7, 3, 3, 4, 0, 4, 0, 7, 4, 8, 7, 0, 4, 7, 1, 4, 7, 3, 0, 6, 6, 4, 3, 2, 5, 2, 1, 7, 2, 7, 0, 1, 7, 6, 9, 9, 2, 2, 3, 9, 0, 3, 5, 4, 6, 2, 3, 1, 4, 2, 4, 0, 5, 5, 0, 3, 6, 3, 4, 6, 3, 2, 9, 1, 1, 2, 0, 4, 1, 9, 3, 8, 9, 8, 0, 0
Offset: 1

Views

Author

Klaus Brockhaus, Apr 19 2010

Keywords

Comments

Continued fraction expansion of (21+5*sqrt(21))/6 is A010705 preceded by 7.

Examples

			(21+5*sqrt(21))/6 = 7.31881307912986667215...
		

Crossrefs

Cf. A010477 (decimal expansion of sqrt(21)), A010705 (repeat 3, 7).

Programs

  • Mathematica
    RealDigits[(21+5*Sqrt[21])/6,10,120][[1]] (* Harvey P. Dale, Feb 20 2022 *)

A178131 Decimal expansion of (11+3*sqrt(21))/17.

Original entry on oeis.org

1, 4, 5, 5, 7, 4, 8, 6, 5, 2, 0, 5, 1, 0, 3, 0, 5, 8, 9, 3, 9, 7, 8, 9, 0, 6, 8, 1, 2, 4, 6, 1, 1, 9, 1, 4, 5, 1, 1, 4, 9, 0, 4, 1, 0, 1, 7, 8, 2, 5, 8, 3, 2, 7, 6, 9, 3, 0, 6, 8, 9, 7, 8, 6, 5, 7, 1, 8, 0, 0, 3, 1, 0, 3, 9, 0, 7, 8, 3, 0, 9, 7, 6, 3, 6, 0, 6, 3, 8, 0, 4, 6, 1, 6, 4, 9, 0, 2, 9, 9, 8, 8, 4, 2, 8
Offset: 1

Views

Author

Klaus Brockhaus, May 20 2010

Keywords

Comments

Continued fraction expansion of (11+3*sqrt(21))/17 is A131800.

Examples

			(11+3*sqrt(21))/17 = 1.45574865205103058939...
		

Crossrefs

Cf. A010477 (decimal expansion of sqrt(21)), A131800 (repeat 1, 2, 5, 6).
Previous Showing 11-16 of 16 results.