cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 81 results. Next

A270394 Denominators of r-Egyptian fraction expansion for sqrt(1/2), where r(k) = 1/Fibonacci(k+1).

Original entry on oeis.org

2, 3, 9, 59, 9437, 62059971, 2813586350787717, 8534689167911295735140758101600, 54171527001975050997893888972139886506909953999125751170768531
Offset: 1

Views

Author

Clark Kimberling, Mar 22 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			sqrt(1/2) = 1/2 + 1/(2*3) + 1/(3*9) + 1/(5*59) + ...
		

Crossrefs

Programs

  • Mathematica
    r[k_] := 1/Fibonacci[k+1]; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = Sqrt[1/2]; Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 1/fibonacci(k+1);
    f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x););
    a(k, x=sqrt(1/2)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 22 2016

A270517 Denominators of r-Egyptian fraction expansion for sqrt(1/2), where r(k) = 1/k!.

Original entry on oeis.org

2, 3, 5, 6, 52, 668, 171510, 4590170768, 17103459833953822083, 31906466290986600582512428032058109695, 237271596693541800921324673318278335675822001026279366213434934428597656224
Offset: 1

Views

Author

Clark Kimberling, Mar 30 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			sqrt(1/2) = 1/(1*2) + 1/(2*3) + 1/(6*5) + 1/(24*6) + ...
		

Crossrefs

Programs

  • Mathematica
    r[k_] := 1/k!; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = Sqrt[1/2]; Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 1/k!;
    f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x););
    a(k, x=sqrt(1/2)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 31 2016

A270546 Denominators of r-Egyptian fraction expansion for sqrt(1/2), where r(k) = 1/(2k-1).

Original entry on oeis.org

2, 2, 5, 325, 200533, 65627675599, 22975481891957121466348, 1958997403653886589078102754522745217186637162, 141280756113351994103874857935521871912536028357392961997286697261498102983722388787617517574
Offset: 1

Views

Author

Clark Kimberling, Apr 02 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			sqrt(1/2) = 1/(1*2) + 1/(3*2) + 1/(5*5) + 1/(7*325) + ...
		

Crossrefs

Programs

  • Mathematica
    r[k_] := 1/(2k-1); f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = Sqrt(1/2); Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 1/(2*k-1);
    f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x););
    a(k, x=sqrt(1/2)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Apr 03 2016

A281065 Decimal expansion of the greatest minimum separation between ten points in a unit square.

Original entry on oeis.org

4, 2, 1, 2, 7, 9, 5, 4, 3, 9, 8, 3, 9, 0, 3, 4, 3, 2, 7, 6, 8, 8, 2, 1, 7, 6, 0, 6, 5, 0, 2, 9, 8, 0, 9, 1, 6, 1, 0, 3, 6, 7, 2, 1, 4, 0, 7, 2, 6, 1, 2, 2, 3, 2, 1, 6, 5, 4, 3, 7, 5, 4, 5, 4, 0, 6, 5, 1, 7, 2, 9, 3, 9, 2, 2, 4, 3, 7, 7, 9, 1, 5, 3, 6, 3, 2, 9, 0, 6, 8, 8, 4, 7, 1, 9, 2, 4, 6, 2, 4, 3, 9
Offset: 0

Views

Author

Jeremy Tan, Jan 14 2017

Keywords

Comments

The corresponding values for two to nine points have simple expressions:
N ... d_min
2 ... sqrt(2) (A002193)
3 ... sqrt(6) - sqrt(2) (A120683)
4 ... 1 (A000007)
5 ... sqrt(2) / 2 (A010503)
6 ... sqrt(13) / 6 (A381485)
7 ... 4 - 2*sqrt(3) (A379338)
8 ... sqrt(2 - sqrt(3)) (A101263)
9 ... 1 / 2 (A020761)
In contrast, the value for ten points has a minimal polynomial of degree 18.
The smallest square ten unit circles will fit into has side length s = 2 + 2/d = 6.74744152... and the maximum radius of ten non-overlapping circles in the unit square is 1 / s = 0.14820432...

Examples

			0.421279543983903432768821760650298...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.

Crossrefs

Cf. A281115 (10 points in unit circle), A000007, A002193, A010503, A020761, A101263, A120683, A379338, A381485.

Programs

  • Mathematica
    RealDigits[x /. FindRoot[x^Range[18, 0, -1].{1180129, -11436428, 98015844, -462103584, 1145811528, -1398966480, 227573920, 1526909568, -1038261808, -2960321792, 7803109440, -9722063488, 7918461504, -4564076288, 1899131648, -563649536, 114038784, -14172160, 819200}, {x, 2/5}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Feb 24 2025 *)
  • PARI
    my(p = Pol([1180129, -11436428, 98015844, -462103584, 1145811528, -1398966480, 227573920, 1526909568, -1038261808, -2960321792, 7803109440, -9722063488, 7918461504, -4564076288, 1899131648, -563649536, 114038784, -14172160, 819200])); polrootsreal(p)[1]

Formula

d is the smallest real root of 1180129*d^18 - 11436428*d^17 + 98015844*d^16 - 462103584*d^15 + 1145811528*d^14 - 1398966480*d^13 + 227573920*d^12 + 1526909568*d^11 - 1038261808*d^10 - 2960321792*d^9 + 7803109440*d^8 - 9722063488*d^7 + 7918461504*d^6 - 4564076288*d^5 + 1899131648*d^4 - 563649536*d^3 + 114038784*d^2 - 14172160*d + 819200.

A343055 Decimal expansion of the imaginary part of i^(1/16), or sin(Pi/32).

Original entry on oeis.org

0, 9, 8, 0, 1, 7, 1, 4, 0, 3, 2, 9, 5, 6, 0, 6, 0, 1, 9, 9, 4, 1, 9, 5, 5, 6, 3, 8, 8, 8, 6, 4, 1, 8, 4, 5, 8, 6, 1, 1, 3, 6, 6, 7, 3, 1, 6, 7, 5, 0, 0, 5, 6, 7, 2, 5, 7, 2, 6, 4, 9, 7, 9, 8, 0, 9, 3, 8, 7, 3, 0, 2, 7, 8, 9, 0, 8, 7, 5, 3, 6, 8, 0, 7, 1, 1, 1, 0, 7, 7, 1, 4, 6, 3, 1, 8, 5, 5, 9, 5, 5, 4, 0, 7, 4, 2, 0, 6, 5, 2, 6, 4, 4, 4, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Comments

An algebraic number of degree 16 and denominator 2. - Charles R Greathouse IV, Jan 09 2022

Examples

			0.09801714032956060199419...
		

Crossrefs

sin(Pi/m): A010527 (m=3), A010503 (m=4), A019845 (m=5), A323601 (m=7), A182168 (m=8), A019829 (m=9), A019827 (m=10), A019824 (m=12), A232736 (m=14), A019821 (m=15), A232738 (m=16), A241243 (m=17), A019819 (m=18), A019818 (m=20), A343054 (m=24), A019815 (m=30), this sequence (m=32), A019814 (m=36).

Programs

  • Mathematica
    RealDigits[Sin[Pi/32], 10, 100, -1][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    imag(I^(1/16))
    
  • PARI
    sin(Pi/32)
    
  • PARI
    sqrt(2-sqrt(2+sqrt(2+sqrt(2))))/2
    
  • Sage
    numerical_approx(sin(pi/32), digits=123) # G. C. Greubel, Sep 30 2022

Formula

Equals (1/2) * sqrt(2-sqrt(2+sqrt(2+sqrt(2)))).
One of the 16 real roots of -128*x^2 +2688*x^4 -21504*x^6 +84480*x^8 +32768*x^16 -131072*x^14 +212992*x^12 -180224*x^10 +1 =0. - R. J. Mathar, Aug 29 2025
Equals A232738/(2*A343056). - R. J. Mathar, Sep 05 2025

A343056 Decimal expansion of the real part of i^(1/16), or cos(Pi/32).

Original entry on oeis.org

9, 9, 5, 1, 8, 4, 7, 2, 6, 6, 7, 2, 1, 9, 6, 8, 8, 6, 2, 4, 4, 8, 3, 6, 9, 5, 3, 1, 0, 9, 4, 7, 9, 9, 2, 1, 5, 7, 5, 4, 7, 4, 8, 6, 8, 7, 2, 9, 8, 5, 7, 0, 6, 1, 8, 3, 3, 6, 1, 2, 9, 6, 5, 7, 8, 4, 8, 9, 0, 1, 6, 6, 8, 9, 4, 5, 8, 6, 5, 3, 7, 9, 7, 2, 5, 2, 9, 0, 8, 4, 2, 6, 9, 6, 4, 8, 3, 9, 0, 2, 8, 7, 7, 2, 4, 4, 9, 3, 1, 1, 8, 2, 9
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Examples

			0.9951847266721968862448369...
		

Crossrefs

cos(Pi/m): A010503 (m=4), A019863 (m=5), A010527 (m=6), A073052 (m=7), A144981 (m=8), A019879 (m=9), A019881 (m=10), A019884 (m=12), A232735 (m=14), A019887 (m=15), A232737 (m=16), A210649 (m=17), A019889 (m=18), A019890 (m=20), A144982 (m=24), A019893 (m=30). this sequence (m=32), A019894 (m=36).

Programs

  • Magma
    R:= RealField(127); Cos(Pi(R)/32); // G. C. Greubel, Sep 30 2022
    
  • Mathematica
    RealDigits[Cos[Pi/32], 10, 100][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    real(I^(1/16))
    
  • PARI
    cos(Pi/32)
    
  • PARI
    sqrt(2+sqrt(2+sqrt(2+sqrt(2))))/2
    
  • SageMath
    numerical_approx(cos(pi/32), digits=122) # G. C. Greubel, Sep 30 2022

Formula

Equals (1/2) * sqrt(2+sqrt(2+sqrt(2+sqrt(2)))).
Satisfies 32768*x^16 -131072*x^14 +212992*x^12 -180224*x^10 +84480*x^8 -21504*x^6 +2688*x^4 -128*x^2 +1 = 0. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/16,1/16;1/2;1/2). - R. J. Mathar, Aug 31 2025

A380703 Decimal expansion of the obtuse vertex angle, in radians, in a (small) triakis octahedron face.

Original entry on oeis.org

2, 0, 4, 5, 5, 3, 5, 8, 3, 8, 3, 4, 9, 1, 6, 7, 7, 4, 9, 4, 0, 0, 9, 1, 6, 8, 1, 7, 6, 3, 8, 2, 4, 5, 5, 2, 7, 2, 3, 7, 7, 4, 4, 6, 7, 2, 0, 5, 6, 6, 9, 7, 1, 8, 6, 9, 8, 3, 8, 4, 7, 7, 1, 4, 5, 8, 7, 1, 3, 7, 5, 3, 5, 1, 9, 3, 2, 3, 8, 0, 8, 7, 8, 4, 8, 1, 6, 4, 1, 9
Offset: 1

Views

Author

Paolo Xausa, Jan 30 2025

Keywords

Examples

			2.045535838349167749400916817638245527237744672...
		

Crossrefs

Cf. A380702 (face obtuse angles).

Programs

  • Mathematica
    First[RealDigits[ArcCos[1/4 - Sqrt[2]/2], 10, 100]]

Formula

Equals arccos(1/4 - sqrt(2)/2) = arccos(1/2 + A010503).
Equals Pi - 2*A380702.

A020771 Decimal expansion of 1/sqrt(14).

Original entry on oeis.org

2, 6, 7, 2, 6, 1, 2, 4, 1, 9, 1, 2, 4, 2, 4, 3, 8, 4, 6, 8, 4, 5, 5, 3, 4, 8, 0, 8, 7, 9, 7, 5, 3, 5, 2, 1, 5, 5, 4, 0, 0, 1, 4, 1, 4, 8, 4, 1, 3, 3, 7, 6, 3, 9, 0, 2, 1, 6, 9, 6, 1, 0, 4, 8, 0, 8, 5, 7, 3, 9, 3, 9, 7, 3, 6, 2, 0, 9, 9, 3, 0, 5, 6, 9, 7, 7, 2, 1, 3, 5, 3, 7, 1, 0, 2, 7, 1, 1, 2
Offset: 0

Views

Author

Keywords

Comments

1/sqrt(14) = 0.267261241912424384684553480879753521554001414841337639021696104808573939736... [Vladimir Joseph Stephan Orlovsky, May 30 2010]

Programs

Formula

Equals 1/A010471 = A010503 * A020764. - R. J. Mathar, Nov 19 2024

A270916 (r,1)-greedy sequence, where r(k) = 1/(k*sqrt(2)).

Original entry on oeis.org

1, 2, 3, 5, 65, 6529, 136091233, 41625259047416909, 2189507051227161558033650829868135, 75931290362065676573711484986356332365619562746656079489987281066955
Offset: 1

Views

Author

Clark Kimberling, Apr 09 2016

Keywords

Comments

Let x > 0, and let r = (r(k)) be a sequence of positive irrational numbers. Let a(1) be the least positive integer m such that r(1)/m < x, and inductively let a(n) be the least positive integer m such that r(1)/a(1) + ... + r(n-1)/a(n-1) + r(n)/m < x. The sequence (a(n)) is the (r,x)-greedy sequence. We are interested in choices of r and x for which the series r(1)/a(1) + ... + r(n)/a(n) + ... converges to x. See A270744 for a guide to related sequences.

Examples

			a(1) = ceiling(r(1)) = ceiling(1/sqrt(2)) = ceiling(0.707...) = 1;
a(2) = ceiling(r(2)/(1 - r(1)/1)) = 2;
a(3) = ceiling(r(3)/(1 - r(1)/1 - r(2)/2)) = 3.
The first 6 terms of the series r(1)/a(1) + ... + r(n)/a(n) + ... are 0.707..., 0.883..., 0.962..., 0.997..., 0.99998..., 0.9999999992...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity; z = 16;
    r[k_] := N[1/(k*Sqrt[2]), 1000]; f[x_, 0] = x;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = 1; Table[n[x, k], {k, 1, z}]
    N[Sum[r[k]/n[x, k], {k, 1, 18}], 200]

Formula

a(n) = ceiling(r(n)/s(n)), where s(n) = 1 - r(1)/a(1) - r(2)/a(2) - ... - r(n-1)/a(n-1).
r(1)/a(1) + ... + r(n)/a(n) + ... = 1.
Conjecture: a(n) = A270582(n-1). - R. J. Mathar, Jun 02 2016

A371466 Decimal expansion of Product_{k>=1} (1 - 1/(3*k+1)^2).

Original entry on oeis.org

8, 8, 3, 3, 1, 9, 3, 7, 5, 1, 4, 2, 7, 2, 4, 9, 7, 8, 6, 5, 6, 8, 4, 4, 7, 4, 9, 8, 2, 4, 2, 1, 9, 3, 5, 1, 2, 8, 5, 9, 3, 4, 2, 6, 9, 1, 0, 1, 2, 7, 8, 7, 6, 5, 0, 6, 3, 4, 5, 2, 6, 2, 0, 9, 1, 7, 7, 2, 6, 5, 0, 0, 8, 6, 4, 0, 5, 3, 9, 5, 6, 8, 0, 2, 7, 4, 3, 4, 9, 6, 6, 6, 6, 6, 9, 1, 7, 9, 3, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 31 2024

Keywords

Examples

			0.8833193751427249786568447498242193512859342691...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Gamma[1/3]^3/(4 Sqrt[3] Pi), 10, 100][[1]]

Formula

Equals Gamma(1/3)^3 / (4 * sqrt(3) * Pi).
Equals A290570/2. - Hugo Pfoertner, Mar 31 2024
Equals Integral_{x=0..1} (1-x^3)^(1/3) dx. - Mikhail Kurkov, Jun 29 2025
Previous Showing 61-70 of 81 results. Next