cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A133273 Indices of centered decagonal numbers which are also decagonal numbers.

Original entry on oeis.org

1, 10, 171, 3060, 54901, 985150, 17677791, 317215080, 5692193641, 102142270450, 1832868674451, 32889493869660, 590178020979421, 10590314883759910, 190035489886698951, 3410048503076821200, 61190837565496082641, 1098025027675852666330, 19703259660599851911291
Offset: 1

Views

Author

Richard Choulet, Oct 16 2007

Keywords

Comments

Numbers k such that 80*k^2 - 80*k + 25 is a square.
Also the indices of centered square numbers which are also centered pentagonal numbers. - Colin Barker, Jan 01 2015

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{19,-19,1},{1,10,171},20] (* Harvey P. Dale, Oct 09 2020 *)
  • PARI
    Vec(x*(-1+9*x)/((-1+x)*(1-18*x+x^2)) + O(x^100)) \\ Colin Barker, Jan 01 2015

Formula

a(n+2) = 18*a(n+1) - a(n) - 8.
a(n+1) = 9*a(n) - 4 + sqrt(80*a(n)^2 - 80*a(n) + 25).
G.f.: x*(-1+9*x)/(-1+x)/(1 - 18*x + x^2). - R. J. Mathar, Nov 14 2007
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3). - Colin Barker, Jan 01 2015
Product_{n>=2} (1 - 1/a(n)) = 2/sqrt(5) (= A010532 / 10). - Amiram Eldar, Dec 02 2024

Extensions

More terms from Paolo P. Lava, Nov 25 2008

A378388 Decimal expansion of the surface area of a tetrakis hexahedron with unit shorter edge length.

Original entry on oeis.org

1, 1, 9, 2, 5, 6, 9, 5, 8, 7, 9, 9, 9, 8, 8, 7, 8, 3, 8, 0, 8, 4, 8, 9, 2, 6, 2, 3, 3, 2, 3, 3, 4, 7, 3, 2, 5, 5, 6, 8, 3, 2, 9, 7, 9, 1, 7, 9, 2, 8, 1, 3, 7, 1, 9, 6, 1, 1, 1, 4, 5, 1, 9, 7, 5, 5, 2, 2, 7, 7, 8, 2, 7, 0, 0, 6, 8, 2, 9, 2, 7, 9, 6, 8, 7, 6, 8, 7, 6, 8
Offset: 2

Views

Author

Paolo Xausa, Nov 27 2024

Keywords

Comments

The tetrakis hexahedron is the dual polyhedron of the truncated octahedron.

Examples

			11.925695879998878380848926233233473255683297917928...
		

Crossrefs

Cf. A374359 (volume - 1), A010532 (inradius*10), A179587 (midradius + 1), A378389 (dihedral angle).
Cf. A377341 (surface area of a truncated octahedron with unit edge).

Programs

  • Mathematica
    First[RealDigits[16*Sqrt[5]/3, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TetrakisHexahedron", "SurfaceArea"], 10, 100]]

Formula

Equals (16/3)*sqrt(5) = (16/3)*A002163 = 16*A208899.

A041142 Numerators of continued fraction convergents to sqrt(80).

Original entry on oeis.org

8, 9, 152, 161, 2728, 2889, 48952, 51841, 878408, 930249, 15762392, 16692641, 282844648, 299537289, 5075441272, 5374978561, 91075098248, 96450076809, 1634276327192, 1730726404001, 29325898791208, 31056625195209, 526231901914552, 557288527109761
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (8+9*x+8*x^2-x^3)/(1-18*x^2+x^4) )); // G. C. Greubel, Apr 16 2019
    
  • Mathematica
    CoefficientList[Series[(8+9*x+8*x^2-x^3)/(1-18*x^2+x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 29 2013 *)
  • PARI
    Vec((8+9*x+8*x^2-x^3)/(1-18*x^2+x^4) + O(x^30)) \\ Colin Barker, Mar 27 2016
    
  • Sage
    ((8+9*x+8*x^2-x^3)/(1-18*x^2+x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 16 2019

Formula

G.f.: (8+9*x+8*x^2-x^3)/(1-18*x^2+x^4).
a(n) = 18*a(n-2) - a(n-4).
a(n) = (-3*(-2-sqrt(5))^(n+1) + 5*(2-sqrt(5))^(n+1) - 3*(-2+sqrt(5))^(n+1) + 5*(2+sqrt(5))^(n+1))/4. - Colin Barker, Mar 27 2016
a(n) = (5 - 3*(-1)^(n+1))*Lucas(3*(n+1))/4. - Ehren Metcalfe, Apr 15 2019

Extensions

More terms from Colin Barker, Nov 05 2013
First term 1 removed in b-file, formulas and programs by Georg Fischer, Jul 01 2019

A041143 Denominators of continued fraction convergents to sqrt(80).

Original entry on oeis.org

1, 1, 17, 18, 305, 323, 5473, 5796, 98209, 104005, 1762289, 1866294, 31622993, 33489287, 567451585, 600940872, 10182505537, 10783446409, 182717648081, 193501094490, 3278735159921, 3472236254411, 58834515230497, 62306751484908, 1055742538989025
Offset: 0

Views

Author

Keywords

Comments

This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 16 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 28 2014

Crossrefs

Programs

  • GAP
    List([0..30], n-> (5 +3*(-1)^n)*Fibonacci(3*(n+1))/16 ); # G. C. Greubel, Jul 02 2019
    
  • Magma
    I:=[1,1,17,18]; [n le 4 select I[n] else 18*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 11 2013
    
  • Maple
    with(numtheory): cf := cfrac(sqrt(80),25): seq(nthdenom(cf,n), n=0..24); # Peter Luschny, Jul 06 2019
  • Mathematica
    Denominator/@Convergents[Sqrt[80], 30] (* Vladimir Joseph Stephan Orlovsky, Jul 05 2011 *)
    CoefficientList[Series[(1 + x - x^2)/(1 - 18 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 11 2013 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,18,0]^n*[1;1;17;18])[1,1] \\ Charles R Greathouse IV, Nov 13 2015
    
  • PARI
    a(n) = (5 + 3*(-1)^n)*fibonacci(3*(n+1))/16 \\ Georg Fischer, Jul 01 2019
    
  • Python
    from sympy import continued_fraction_convergents as convergents, continued_fraction_iterator as cf, sqrt, denom
    denominators = (denom(c) for c in convergents(cf(sqrt(80))))
    print([next(denominators) for  in range(30)]) # _Ehren Metcalfe, Jul 03 2019
  • Sage
    [(5 +3*(-1)^n)*fibonacci(3*(n+1))/16 for n in (0..30)] # G. C. Greubel, Jul 02 2019
    

Formula

G.f.: (1 + x - x^2) / (1 - 18*x^2 + x^4).
a(n) = 18*a(n-2) - a(n-4).
From Peter Bala, May 28 2014: (Start)
Let alpha = 2 + sqrt(5) and beta = 2 - sqrt(5) be the roots of the equation x^2 - 4*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n even, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n odd.
a(n) = A001076(n+1) for n even; a(n) = 1/4*A001076(n+1) for n odd.
a(n) = Product_{k = 1..floor(n/2)} ( 16 + 4*cos^2(k*Pi/(n+1)) ).
Recurrence equations: a(0) = 1, a(1) = 1 and for n >= 1, a(2*n) = 16*a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = a(2*n) + a(2*n - 1). (End)
a(n) = (5 + 3*(-1)^n)*Fibonacci(3*(n+1))/16. - Ehren Metcalfe, Apr 15 2019

Extensions

First term 0 removed from b-file, formulas and programs by Georg Fischer, Jul 01 2019

A249600 Decimal expansion of 1/phi + 1/phi^3 + 1/phi^5, where phi is the Golden Ratio.

Original entry on oeis.org

9, 4, 4, 2, 7, 1, 9, 0, 9, 9, 9, 9, 1, 5, 8, 7, 8, 5, 6, 3, 6, 6, 9, 4, 6, 7, 4, 9, 2, 5, 1, 0, 4, 9, 4, 1, 7, 6, 2, 4, 7, 3, 4, 3, 8, 4, 4, 6, 1, 0, 2, 8, 9, 7, 0, 8, 3, 5, 8, 8, 9, 8, 1, 6, 4, 2, 0, 8, 3, 7, 0, 2, 5, 5, 1, 2, 1, 9, 5, 9, 7, 6, 5, 7, 6, 5, 7, 6, 3, 3, 5, 1, 5, 1, 2
Offset: 0

Views

Author

N. J. A. Sloane, Nov 02 2014

Keywords

Comments

1/phi + 1/phi^3 + 1/phi^5 + 1/phi^7 + 1/phi^9 + ... = 1.

References

  • David Snook, Email, Mar 31 2009

Crossrefs

Programs

  • Mathematica
    With[{g=GoldenRatio},RealDigits[1/g+1/g^3+1/g^5,10,120][[1]]] (* Harvey P. Dale, Jul 16 2017 *)

Formula

Equals A010532 minus 8. - R. J. Mathar, Nov 09 2014

A378389 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a tetrakis hexahedron.

Original entry on oeis.org

2, 4, 9, 8, 0, 9, 1, 5, 4, 4, 7, 9, 6, 5, 0, 8, 8, 5, 1, 6, 5, 9, 8, 3, 4, 1, 5, 4, 5, 6, 2, 1, 8, 0, 2, 4, 6, 1, 5, 5, 6, 5, 8, 8, 0, 8, 2, 5, 9, 7, 9, 3, 4, 3, 8, 1, 0, 9, 3, 3, 8, 4, 7, 3, 5, 9, 4, 3, 0, 3, 9, 3, 1, 4, 7, 4, 5, 8, 7, 9, 0, 9, 9, 1, 5, 2, 1, 7, 9, 8
Offset: 1

Views

Author

Paolo Xausa, Nov 27 2024

Keywords

Comments

The tetrakis hexahedron is the dual polyhedron of the truncated octahedron.

Examples

			2.498091544796508851659834154562180246155658808...
		

Crossrefs

Cf. A378388 (surface area), A374359 (volume - 1), A010532 (inradius*10), A179587 (midradius + 1).
Cf. A156546 and A195698 (dihedral angles of a truncated octahedron), A195729.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-4/5], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["TetrakisHexahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-4/5).
Equals 2*A195729. - Amiram Eldar, Nov 27 2024

A338574 Decimal expansion of the Prime Zeta Function at 3/2.

Original entry on oeis.org

8, 4, 9, 5, 6, 2, 6, 8, 3, 6, 2, 1, 5, 6, 6, 4, 4, 6, 3, 5, 0, 8, 9, 3, 0, 6, 5, 9, 1, 7, 6, 1, 1, 1, 8, 7, 3, 5, 4, 0, 0, 2, 0, 4, 5, 2, 7, 5, 4, 5, 3, 1, 1, 9, 4, 3, 0, 1, 6, 1, 8, 4, 6, 2, 6, 8, 0, 9
Offset: 0

Views

Author

R. J. Mathar, Nov 03 2020

Keywords

Examples

			0.849562683621566446350893065... = A020765 +A020784 +A010532/10. + ...
		

Crossrefs

Cf. A085548.

Programs

  • Mathematica
    N[PrimeZetaP[3/2],70]

A377606 Decimal expansion of -30*arcsin((5 - 4*sqrt(5))/15).

Original entry on oeis.org

7, 9, 8, 2, 4, 0, 1, 4, 1, 6, 7, 8, 4, 8, 0, 7, 4, 1, 7, 2, 1, 6, 2, 1, 2, 8, 5, 0, 5, 6, 3, 1, 8, 8, 8, 0, 1, 0, 3, 9, 0, 6, 5, 7, 9, 2, 8, 4, 7, 8, 0, 2, 8, 0, 6, 9, 4, 0, 4, 9, 2, 0, 8, 2, 2, 4, 8, 6, 3, 1, 0, 6, 5, 0, 3, 0, 7, 6, 3, 0, 0, 4, 8, 4, 6, 4, 9, 3, 7, 1
Offset: 1

Views

Author

Paolo Xausa, Nov 03 2024

Keywords

Comments

Dehn invariant of an icosidodecahedron with unit edge length and (negated) of a (small) rhombicosidodecahedron with unit edge length.

Examples

			7.9824014167848074172162128505631888010390657928...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[-30*ArcSin[(5 - Sqrt[80])/15], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["Icosidodecahedron", "DehnInvariant"], 10, 100]]
  • PARI
    30*asin((4*sqrt(5)-5)/15) \\ Charles R Greathouse IV, Nov 21 2024

Formula

Equals -30*arcsin((5 - 4*A002163)/15) = -30*arcsin((5 - A010532)/15).

A387189 Decimal expansion of the smallest dihedral angle, in radians, in a pentagonal bipyramid (Johnson solid J_13).

Original entry on oeis.org

1, 3, 0, 4, 7, 1, 6, 2, 7, 9, 5, 6, 8, 7, 3, 6, 3, 7, 1, 9, 9, 0, 7, 8, 1, 2, 6, 3, 2, 8, 7, 6, 4, 5, 1, 4, 8, 7, 3, 0, 6, 1, 5, 8, 3, 9, 9, 2, 5, 9, 5, 9, 4, 8, 3, 5, 8, 9, 4, 5, 5, 8, 9, 3, 4, 1, 2, 2, 8, 7, 1, 6, 7, 6, 4, 2, 0, 7, 9, 0, 6, 5, 8, 1, 9, 1, 3, 4, 2, 8
Offset: 1

Views

Author

Paolo Xausa, Aug 21 2025

Keywords

Comments

This is the dihedral angle between triangular faces at the edge where the two pyramidal parts of the solid meet.
Also the dihedral angle between triangular faces in a pentagonal orthobicupola (Johnson solid J_30).

Examples

			1.3047162795687363719907812632876451487306158399...
		

Crossrefs

Cf. A236367 (J_13 smallest dihedral angle).
Cf. other J_30 dihedral angles: A105199, A377995, A377996.
Cf. A179641 (J_13 volume), A120011 (J_13 surface area, divided by 10).
Cf. A384624 (J_30 volume), A384625 (J_30 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcCos[(Sqrt[80] - 5)/15], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["J13", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos((4*sqrt(5) - 5)/15) = arccos((A010532 - 5)/15).
Equals 2*A386852.
Previous Showing 11-19 of 19 results.