A111952 a(n) = 3*n mod 7.
0, 3, 6, 2, 5, 1, 4, 0, 3, 6, 2, 5, 1, 4, 0, 3, 6, 2, 5, 1, 4, 0, 3, 6, 2, 5, 1, 4, 0, 3, 6, 2, 5, 1, 4, 0, 3, 6, 2, 5, 1, 4, 0, 3, 6, 2, 5, 1, 4, 0, 3, 6, 2, 5, 1, 4, 0, 3, 6, 2, 5, 1, 4, 0, 3, 6, 2, 5, 1, 4, 0, 3, 6, 2, 5, 1, 4, 0, 3, 6, 2, 5, 1, 4, 0, 3, 6, 2, 5, 1
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1).
Crossrefs
Cf. A022264.
Programs
-
Magma
[3*n mod 7 : n in [0..100]]; // Wesley Ivan Hurt, Apr 10 2015
-
Maple
A111952:=n->3*n mod 7: seq(A111952(n), n=0..100); # Wesley Ivan Hurt, Apr 10 2015
-
Mathematica
Mod[3 Range[0, 100], 7] (* Wesley Ivan Hurt, Apr 10 2015 *)
-
PARI
a(n)=3*n%7 \\ Charles R Greathouse IV, Jul 23 2011
Formula
G.f.: (3*x+6*x^2+2*x^3+5*x^4+x^5+4*x^6)/(1-x^7).
a(n) = mod(n*(7*n-1)/2, 7) = mod(A022264(n), 7).
Recurrence: a(n) = a(n-7) for n > 6. - Wesley Ivan Hurt, Apr 10 2015
a(n) = (21 + 4*(n mod 7) - 3*((n+1) mod 7) + 4*((n+2) mod 7) - 3*((n+3) mod 7) + 4*((n+4) mod 7) - 3*((n+5) mod 7) - 3*((n+6) mod 7))/7. - Wesley Ivan Hurt, Dec 23 2016
a(n) = A010876(3*n). - R. J. Mathar, Jan 15 2021
Comments