cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 56 results. Next

A374194 a(n) is the smallest number which can be represented as the sum of two nonzero hexagonal pyramidal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

2, 5972, 5170425
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 30 2024

Keywords

Comments

There are no further positive terms <= 10^15. - Michael S. Branicky, Jun 30 2024

Examples

			a(2) = 5972 = 1222 + 4750 = 1925 + 4047.
		

Crossrefs

A374417 a(n) is the smallest number which can be represented as the sum of n distinct positive cubes in exactly 2 ways, or -1 if no such number exists.

Original entry on oeis.org

-1, 1729, 1009, 1036, 1161, 1504, 1899, 2512, 3024, 4355, 6552, 9296, 11648, 14392, 19305, 25137, 30997, 35757, 44092, 53353, 64001, 76168, 88669, 104625, 122201, 144153, 167401, 191772, 216161, 245952, 278757, 312993, 352297, 393822, 434295, 489167, 541081, 605656, 671446
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 08 2024

Keywords

Examples

			a(2) = 1729 = 1^3 + 12^3 = 9^3 + 10^3.
a(3) = 1009 = 1^3 + 2^3 + 10^3 = 4^3 + 6^3 + 9^3.
		

Crossrefs

Programs

  • Maple
    G:= mul(1+t*x^(i^3), i=1..35):
    R:= -1:
    for m from 2 do
      C:= expand(coeff(G,t,m)):
      C2:= convert(select(s -> subs(x=1,s)=2, C),list);
      v:= min(map(degree,C2));
      if v >= 36^3 + add(i^3,i=1..m-1) then break fi;
      R:= R,v;
    od:
    R; # Robert Israel, Jul 08 2024

Extensions

a(15)-a(27) from Robert Israel, Jul 08 2024
a(28)-a(39) from Michael S. Branicky, Jul 10 2024

A138129 Multiples of 1729, the Hardy-Ramanujan number.

Original entry on oeis.org

0, 1729, 3458, 5187, 6916, 8645, 10374, 12103, 13832, 15561, 17290, 19019, 20748, 22477, 24206, 25935, 27664, 29393, 31122, 32851, 34580, 36309, 38038, 39767, 41496, 43225, 44954, 46683, 48412, 50141, 51870, 53599, 55328, 57057, 58786, 60515, 62244, 63973, 65702, 67431
Offset: 0

Views

Author

Omar E. Pol, Mar 09 2008

Keywords

Comments

About 1729: "No," said Ramanujan, "It is a very interesting number..."

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1997, p. 153.

Crossrefs

Programs

Formula

a(n) = 1729*n.
From Elmo R. Oliveira, Jun 23 2025: (Start)
G.f.: 1729*x/(1-x)^2.
E.g.f.: 1729*x*exp(x).
a(n) = 91*A008601(n).
a(n) = 2*a(n-1) - a(n-2). (End)

Extensions

More terms from Elmo R. Oliveira, Jun 23 2025

A138130 Powers of 1729, the Hardy-Ramanujan number.

Original entry on oeis.org

1, 1729, 2989441, 5168743489, 8936757492481, 15451653704499649, 26715909255079893121, 46191807102033135206209, 79865634479415290771535361, 138087682014909037743984639169, 238753602203777726259349441123201, 412804978210331688702415183702014529
Offset: 0

Views

Author

Omar E. Pol, Mar 09 2008

Keywords

Comments

About 1729: "No," said Ramanujan, "It is a very interesting number..."

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1997, p. 153.

Crossrefs

Programs

Formula

a(n) = 1729^n.
From Chai Wah Wu, Jan 19 2021: (Start)
a(n) = 1729*a(n-1) for n > 0.
G.f.: 1/(1 - 1729*x). (End)
From Elmo R. Oliveira, Jun 23 2025: (Start)
E.g.f.: exp(1729*x).
a(n) = A000420(n)*A001022(n)*A001029(n). (End)

A180106 Semiprimes which are the sum of three distinct positive cubes of semiprime numbers in two or more distinct ways.

Original entry on oeis.org

88073, 195905, 196057, 196841, 205102, 211466, 610903, 747209, 809966, 1078622, 1543267, 1828441, 1967402, 2143783, 2312029, 2803501, 3055258, 3108673, 3244466, 3477629, 3662567, 4237577, 4770137, 5741074, 5835593, 5908889, 7189265, 7497118, 8438249, 8742781
Offset: 1

Views

Author

Keywords

Comments

610903 = 74^3+55^3+34^3 = 82^3+39^3+6^3.
88073 = 29*3037 = 21^3+33^3+35^3 = 25^3+26^3+38^3. - Chai Wah Wu, May 20 2017

Crossrefs

Programs

  • Mathematica
    f[n_] := PrimeOmega@ n == 2; lst = {}; Do[Do[Do[If[And[f[a], f[b], f[c], f[p = a^3 + b^3 + c^3]], AppendTo[lst, p]], {c, b - 1, 1, -1}], {b, a - 1, 1, -1}], {a, 200}]; lst1 = Sort@ lst; lst = {}; Do[If[lst1[[n]] == lst1[[n + 1]], AppendTo[lst, lst1[[n]]]], {n, Length[lst1] - 1}]; lst (* Corrected by Michael De Vlieger, May 21 2017 *)

Extensions

Terms corrected by Chai Wah Wu, May 20 2017

A255018 Smallest number that is the sum of 3 nonnegative cubes in exactly n ways.

Original entry on oeis.org

4, 0, 216, 5104, 13896, 161568, 1259712, 2016496, 2562624, 14926248, 58995000, 34012224, 150547032, 471960000, 119095488, 1259712000, 952763904, 5159780352, 3974344704, 2176782336, 10077696000, 2985984000, 36330467328, 30723115968, 23887872000, 17414258688, 72825163776, 75686967000
Offset: 0

Views

Author

Alex Ratushnyak, Feb 25 2015

Keywords

Examples

			a(0) = 4 because the smallest number that cannot be represented as a sum of 3 nonnegative cubes is 4.
a(1) = 0 is the sum of three 0's.
a(2) = 216 = 3^3 + 4^3 + 5^3 = 6^3 + 0 + 0.
a(3) = 5104 = 1 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3.
		

Crossrefs

Programs

  • Python
    TOP = 6000000
    a = [0]*TOP
    for b in range(TOP):
      b3 = b**3
      if b3*3>=TOP: break
      for c in range(b,TOP):
        c3 = b3 + c**3
        if c3>=TOP: break
        for d in range(c,TOP):
          res = c3 + d**3
          if res>=TOP: break
          a[res] += 1
    m = max(a)
    r = [-1] * (m+1)
    for i in range(TOP):
        if r[a[i]]==-1:  r[a[i]]=i
    print(r)

Extensions

More terms from Rémy Sigrist, Jul 14 2020

A262609 Divisors of 1728.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 96, 108, 144, 192, 216, 288, 432, 576, 864, 1728
Offset: 1

Views

Author

Omar E. Pol, Nov 20 2015

Keywords

Comments

A000578(12) = 1728 is the cube of 12.
The number of divisors of 1728 is A000005(1728) = 28.
The sum of the divisors of 1728 is A000203(1728) = 5080.
The prime factorization of 1728 is 2^6 * 3^3.
1728 + 1 = A001235(1) = A011541(2) = 1729 is the Hardy-Ramanujan number.
Three examples related to cellular automata:
1728 is also the number of ON cells after 32 generations of the cellular automata A160239 and A253088.
1728 is also the total number of ON cells around the central ON cell after 24 generations of the cellular automata A160414 and A256530.
1728 is also the total number of ON cells around the central ON cell after 43 generations of the cellular automata A160172 and A255366.

Examples

			a(3) * a(26) = 3 * 576 = 1728.
a(4) * a(25) = 4 * 432 = 1728.
a(5) * a(24) = 6 * 288 = 1728.
		

Crossrefs

Programs

  • Mathematica
    Divisors[1728]
  • PARI
    divisors(1728)
  • Sage
    divisors(1728);
    

A268583 Happycab numbers: the smallest happy number that is the sum of two cubes of happy numbers in n different ways.

Original entry on oeis.org

7859, 681179092750, 4466203788801326865111
Offset: 1

Views

Author

Corinna Regina Böger, Feb 07 2016

Keywords

Comments

a(n)>3.6*10^24 for n >=4. This lower bound was established by exhaustive crowd computing.
Upper bounds:
a(4)<= 3915335521240189321820073984
=467175960^3+1562319144^3
=569783808^3+1550898288^3
=1085420968^3+1381483928^3
=1157553216^3+1332193392^3
a(5)<=
1508202165690304620654479410485250200981504
=12156471201588^3+114634141265868^3
=33798481396036^3+113692639229372^3
=64341822928208^3+107486686558048^3
=69397851840576^3+105492106344912^3
=72561474196232^3+104039736026296^3

Examples

			a(1) = 7859 = 10^3+19^3;
a(2) = 681179092750 = 4365^3+8425^3 = 5275^3+8115^3;
a(3) = 4466203788801326865111 = 6193863^3+16170804^3 = 8456292^3+15688647^3 = 9457695^3+15354846^3.
		

Crossrefs

A272897 Largest prime factor of n-th taxi-cab number A001235(n).

Original entry on oeis.org

19, 19, 19, 43, 19, 13, 43, 19, 37, 79, 19, 19, 79, 79, 43, 61, 79, 127, 19, 19, 13, 43, 109, 19, 37, 139, 43, 19, 37, 31, 79, 43, 19, 139, 127, 127, 13, 19, 19, 61, 103, 151, 409, 73, 181, 13, 277, 79, 43, 79, 79, 19, 43, 139, 61, 19, 61, 79, 103, 127, 19, 37, 79, 163, 79, 19, 19
Offset: 1

Views

Author

Altug Alkan, May 09 2016

Keywords

Comments

There are two versions of "taxicab numbers" that are A001235 and A011541. This sequence focuses on the version A001235.
All terms of this sequence are members of this sequence infinitely many times. For example, in this sequence there are infinitely many times "277" and there are infinitely many times "17".
Is a(n) >= 13 for all n? This is true for n <= 10000. - Robert Israel, May 09 2016

Examples

			a(1) = A006530(A001235(1)) = A006530(1729) = 19.
		

Crossrefs

Programs

Formula

a(n) = A006530(A001235(n)).

A305131 Numbers k with the property that there exists a positive integer multiplier M such that M times the sum of the digits of k, multiplied further by the reversal of this product, gives k.

Original entry on oeis.org

1, 10, 40, 81, 100, 400, 640, 736, 810, 1000, 1300, 1458, 1729, 1944, 2268, 2430, 3640, 4000, 6400, 7360, 7744, 8100, 10000, 12070, 12100, 13000, 14580, 16120, 17290, 19440, 22680, 23632, 24300, 27010, 30250, 31003, 36400, 38152, 40000, 42282, 51142, 63504
Offset: 1

Views

Author

Viorel Nitica, May 26 2018

Keywords

Comments

These numbers are related to the taxicab number 1729, which has multiplier 1. This is why they might be called "multiplicative Hardy-Ramanujan numbers".
If a(n) is in the sequence, then 10 * a(n) is also in the sequence, with the multiplier 10 times larger. We could call primitive the terms not of this form. Primitive terms which end in 0 are 40, 640, 1300, 2430, 3640, 12070, 12100, 16120, 27010, ... - M. F. Hasler, May 27 2018

Examples

			For k = 1729 the sum of the digits is 19 and M = 1: 19 * 91 = 1729.
For k = 122512 the sum of the digits is 13 and M = 31: 13 * 31 = 403 and 403 * 304 = 122512.
		

Crossrefs

Subsequence of A005349 (Niven numbers).

Programs

  • PARI
    select( is(n,s=sumdigits(n))=n&&!frac(n/=s)&&fordiv(n,M,fromdigits(Vecrev(digits(s*M)))*M==n&&return(1)), [0..10^5]) \\ M. F. Hasler, May 27 2018
Previous Showing 41-50 of 56 results. Next