cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 177 results. Next

A288420 a(n) = Sum_{d|n} d^4*A000593(n/d).

Original entry on oeis.org

1, 17, 85, 273, 631, 1445, 2409, 4369, 6898, 10727, 14653, 23205, 28575, 40953, 53635, 69905, 83539, 117266, 130341, 172263, 204765, 249101, 279865, 371365, 394406, 485775, 558778, 657657, 707311, 911795, 923553, 1118481, 1245505, 1420163, 1520079, 1883154
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000583 and A000593 which are both multiplicative. - Andrew Howroyd, Jul 20 2018

Crossrefs

Sum_{d|n} d^k*A000593(n/d): A288417 (k=0), A109386 (k=1), A288418 (k=2), A288419 (k=3), this sequence (k=4).

Programs

  • Mathematica
    f[p_, e_] :=  (p^(4*e+7) - (p^3+p^2+p+1)*p^(e+1) + p^2 + p + 1)/(p^7 - (p^3+p^2+p+1)*p + p^2 + p + 1); f[2, e_] := (16^(e+1)-1)/15; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 13 2022 *)

Formula

From Amiram Eldar, Nov 13 2022: (Start)
a(n) = A027848(n) for odd n.
Multiplicative with a(2^e) = (16^(e+1)-1)/15 and a(p^e) = (p^(4*e+7) - (p^3+p^2+p+1)*p^(e+1) + p^2 + p + 1)/(p^7 - (p^3+p^2+p+1)*p + p^2 + p + 1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^5, where c = Pi^4*zeta(5)/480 = (3/16)*zeta(4)*zeta(5) = 0.210429... . (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A343193 Number of ordered quadruples (w, x, y, z) with gcd(w, x, y, z) = 1 and 1 <= {w, x, y, z} <= 10^n.

Original entry on oeis.org

1, 9279, 92434863, 923988964495, 9239427676877311, 92393887177379735327, 923938441006918271400831, 9239384074081430755652624559, 92393840333765561759423951663423, 923938402972369921481535120722882015
Offset: 0

Views

Author

Karl-Heinz Hofmann, Apr 07 2021

Keywords

Examples

			(1,2,2,3) is counted, but (2,4,4,6) is not, because gcd = 2.
For n=1, the size of the division tesseract matrix is 10 X 10 X 10 X 10:
.
              o------------x(w=10)------------o
             /|.                            ./ |
            / |.                           ./  |
           /  |.                          ./   |
          /   |.                         ./    |
         /    |.                      z(w=10)  |
        /     |.                      . /      |
       /      |.                     . /       |
      /       |.                   .  /     y(w=10)
     o------------------------------.o         |
    |\        /|¯¯¯¯¯¯x(w=1)¯¯¯¯¯¯/. |         |
    | w      / |                 /.| |         |
    |  \ z(w=1)|                /. | |         |
    |   \  /   |y(w=1)         /.  | |         |
    |    \/-------------------/.   | |         |
    |     |                   |    | |         |        w | sums
    |     |  Cube at w = 1    |    | |         |      ----+-----
    |     |   10 X 10 X 10    | _ _| |---------o        1 | 1000
    |     |    contains       |    / |         /        2 |  875
    |     |      1000         |   /  |        /         3 |  973
    |     |    completely     |  /   |       /          4 |  875
    |     | reduced fractions | /    |      /           5 |  992
    |     |                   |/     |     /            6 |  849
    |     /------------------- \     |    /             7 |  999
    |    /                      \    |   /              8 |  875
    |   w                        w   |  /               9 |  973
    |  /                          \  | /               10 |  868
    | /                            \ |/               ----+-----
    o -------------------------------o       sum for a(1) | 9279
		

References

  • Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54.

Crossrefs

Related counts of k-tuples:
triples: A071778, A342935, A342841;
quadruples: A082540, A343527, A343193;
5-tuples: A343282;
6-tuples: A343978, A344038. - N. J. A. Sloane, Jun 13 2021

Programs

  • Python
    from labmath import mobius
    def A343193(n): return sum(mobius(k)*(10**n//k)**4 for k in range(1, 10**n+1))

Formula

Lim_{n->infinity} a(n)/10^(4*n) = 1/zeta(4) = A215267 = 90/Pi^4.
a(n) = A082540(10^n).

Extensions

Edited by N. J. A. Sloane, Jun 13 2021

A347214 Decimal expansion of Sum_{k=2..4} zeta(k).

Original entry on oeis.org

3, 9, 2, 9, 3, 1, 4, 2, 0, 3, 7, 1, 8, 9, 5, 8, 9, 1, 3, 3, 8, 8, 1, 5, 7, 0, 2, 4, 6, 9, 8, 6, 4, 3, 0, 8, 2, 7, 5, 8, 6, 8, 7, 1, 4, 5, 4, 6, 6, 0, 2, 4, 2, 2, 7, 2, 1, 0, 8, 0, 6, 0, 0, 0, 1, 5, 5, 9, 6, 6, 2, 9, 2, 3, 7, 6, 4, 8, 2, 8, 1, 0, 5, 7, 6, 9, 9
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			3.9293142037189589133881570246986430827586871454660...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[{2, 3, 4}]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)
  • PARI
    zeta(2)+zeta(3)+zeta(4) \\ Michel Marcus, Aug 24 2021

A347215 Decimal expansion of Sum_{k=2..5} zeta(k).

Original entry on oeis.org

4, 9, 6, 6, 2, 4, 1, 9, 5, 8, 8, 6, 2, 3, 2, 8, 8, 3, 9, 7, 1, 9, 5, 2, 2, 5, 1, 1, 1, 5, 5, 6, 7, 7, 2, 5, 0, 8, 1, 5, 7, 6, 8, 0, 6, 4, 9, 6, 7, 9, 3, 7, 0, 3, 9, 1, 8, 4, 9, 9, 8, 6, 7, 8, 0, 5, 9, 7, 6, 9, 8, 8, 2, 1, 6, 2, 7, 6, 4, 2, 9, 5, 1, 3, 7, 0, 3
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			4.9662419588623288397195225111556772508157680...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[Range[2, 5]]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)

A347216 Decimal expansion of Sum_{k=2..6} zeta(k).

Original entry on oeis.org

5, 9, 8, 3, 5, 8, 5, 0, 2, 0, 8, 4, 6, 7, 7, 7, 9, 7, 9, 4, 3, 4, 0, 4, 0, 4, 4, 0, 9, 4, 6, 5, 9, 7, 7, 7, 8, 7, 1, 7, 5, 8, 5, 5, 5, 5, 0, 0, 0, 7, 9, 0, 6, 0, 1, 0, 2, 7, 4, 0, 7, 3, 4, 2, 0, 6, 4, 1, 0, 2, 0, 6, 5, 0, 6, 4, 7, 2, 2, 1, 9, 3, 0, 1, 9, 8, 1
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			5.9835850208467779794340404409465977787175855550...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[Range[2, 6]]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)

A347217 Decimal expansion of Sum_{k=2..7} zeta(k).

Original entry on oeis.org

6, 9, 9, 1, 9, 3, 4, 2, 9, 8, 2, 2, 8, 7, 0, 0, 8, 0, 6, 2, 7, 3, 8, 3, 7, 9, 9, 0, 7, 9, 6, 3, 9, 4, 5, 3, 8, 3, 1, 7, 4, 4, 9, 1, 1, 5, 5, 6, 6, 0, 2, 9, 3, 0, 7, 4, 4, 4, 6, 9, 0, 4, 7, 8, 6, 3, 5, 7, 0, 3, 5, 4, 3, 3, 8, 2, 0, 7, 7, 9, 2, 8, 3, 6, 5, 9, 0
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			6.9919342982287008062738379907963945383174491155660...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[Range[2, 7]]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)

A347218 Decimal expansion of Sum_{k=2..8} zeta(k).

Original entry on oeis.org

7, 9, 9, 6, 0, 1, 1, 6, 5, 4, 4, 2, 6, 6, 4, 5, 1, 4, 5, 6, 5, 2, 5, 2, 3, 2, 2, 9, 3, 0, 5, 0, 4, 7, 0, 0, 3, 5, 7, 6, 4, 0, 9, 9, 0, 6, 2, 1, 5, 8, 7, 9, 3, 2, 7, 7, 7, 3, 8, 0, 0, 6, 8, 1, 2, 8, 8, 2, 8, 6, 4, 9, 5, 9, 5, 6, 8, 2, 6, 7, 4, 2, 7, 6, 1, 1, 9
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			7.99601165442664514565252322930504700357640...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[Range[2, 8]]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)

Formula

Equals A347217 + A013666. - R. J. Mathar, May 27 2024

A347219 Decimal expansion of Sum_{k=2..9} zeta(k).

Original entry on oeis.org

8, 9, 9, 8, 0, 2, 0, 0, 4, 7, 2, 5, 2, 7, 2, 7, 3, 6, 0, 0, 7, 0, 3, 7, 5, 9, 9, 8, 5, 3, 7, 4, 5, 9, 0, 6, 4, 0, 6, 2, 0, 1, 5, 7, 5, 7, 6, 1, 0, 7, 6, 8, 0, 8, 4, 3, 2, 2, 3, 9, 7, 2, 9, 7, 1, 9, 8, 0, 7, 1, 5, 4, 9, 3, 4, 7, 0, 8, 5, 1, 4, 1, 7, 1, 1, 5, 8
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			8.9980200472527273600703759985374590640620...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[Range[2, 9]]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)

A347220 Decimal expansion of Sum_{k=2..10} zeta(k).

Original entry on oeis.org

9, 9, 9, 9, 0, 1, 4, 6, 2, 2, 3, 8, 0, 5, 4, 5, 4, 4, 5, 4, 0, 7, 5, 2, 1, 9, 5, 7, 4, 3, 7, 7, 7, 8, 0, 8, 1, 0, 6, 8, 0, 3, 5, 2, 8, 9, 1, 7, 5, 2, 4, 5, 6, 0, 1, 5, 8, 0, 1, 8, 6, 2, 9, 1, 8, 3, 4, 3, 6, 3, 0, 1, 4, 4, 9, 8, 9, 9, 8, 0, 9, 6, 1, 0, 8, 6, 3
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			9.9990146223805454454075219574377780810680...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[Range[2, 10]]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)

A363607 Expansion of Sum_{k>0} x^(3*k)/(1-x^k)^4.

Original entry on oeis.org

0, 0, 1, 4, 10, 21, 35, 60, 85, 130, 165, 245, 286, 399, 466, 620, 680, 921, 969, 1274, 1366, 1705, 1771, 2325, 2310, 2886, 3010, 3679, 3654, 4666, 4495, 5580, 5622, 6664, 6590, 8285, 7770, 9405, 9426, 11210, 10660, 13230, 12341, 14953, 14740, 16951, 16215, 20181
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[#, 3] &]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/(1-x^k)^4)))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 3) - 3*sigma(f, 2) + 2*sigma(f)) / 6; \\ Amiram Eldar, Dec 30 2024

Formula

G.f.: Sum_{k>0} binomial(k,3) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d,3).
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_3(n) - 3*sigma_2(n) + 2*sigma_1(n)) / 6.
Dirichlet g.f.: zeta(s) * (zeta(s-3) - 3*zeta(s-2) + 2*zeta(s-1)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/24) * n^4. (End)
Previous Showing 51-60 of 177 results. Next