cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A266558 Decimal expansion of the generalized Glaisher-Kinkelin constant A(11).

Original entry on oeis.org

9, 5, 0, 3, 3, 1, 2, 4, 8, 4, 5, 3, 2, 8, 8, 8, 6, 6, 5, 1, 4, 2, 3, 3, 8, 4, 1, 0, 1, 5, 3, 3, 1, 2, 7, 1, 5, 9, 7, 5, 6, 6, 4, 0, 3, 4, 5, 6, 1, 7, 3, 0, 4, 0, 8, 6, 1, 0, 8, 8, 8, 8, 1, 1, 6, 2, 2, 9, 7, 8, 4, 9, 1, 7, 7, 3, 4, 4, 4, 5, 1
Offset: 0

Views

Author

G. C. Greubel, Dec 31 2015

Keywords

Comments

Also known as the 11th Bendersky constant.

Examples

			0.950331248453288866514233841015331271597566403456173040861088881...
		

Crossrefs

Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).

Programs

  • Mathematica
    Exp[N[(BernoulliB[12]/12)*(EulerGamma + Log[2*Pi] - Zeta'[12]/Zeta[12]), 200]]

Formula

A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(11) = exp(H(11)*B(12)/12 - zeta'(-11)) = exp((B(12)/12)*(EulerGamma + log(2*Pi) - (zeta'(12)/zeta(12)))).
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^12-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(12)/12 = -691/32760 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024

A266559 Decimal expansion of the generalized Glaisher-Kinkelin constant A(12).

Original entry on oeis.org

9, 3, 8, 6, 8, 9, 4, 4, 5, 5, 9, 6, 0, 1, 2, 5, 8, 5, 1, 5, 2, 9, 6, 5, 7, 8, 1, 3, 2, 0, 6, 7, 6, 7, 1, 8, 3, 3, 3, 2, 5, 8, 7, 6, 8, 5, 2, 1, 8, 3, 5, 0, 0, 9, 8, 6, 6, 3, 9, 0, 7, 1, 6, 3, 4, 2, 4, 0, 5, 8, 8, 3, 7, 3, 8, 0, 1, 5, 1, 1, 7, 0, 8, 6, 7, 6, 4, 0, 2, 1
Offset: 0

Views

Author

G. C. Greubel, Dec 31 2015

Keywords

Comments

Also known as the 12th Bendersky constant.

Examples

			0.9386894455960125851529657813206767183332587685218350098663907...
		

Crossrefs

Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).

Programs

  • Mathematica
    RealDigits[Exp[N[(BernoulliB[12]/4)*(Zeta[13]/Zeta[12]),200]]][[1]] (* Program amended by Harvey P. Dale, Aug 16 2021 *)

Formula

A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(12) = exp(-zeta'(-12)) = exp((B(12)/4)*(zeta(13)/zeta(12))).
A(12) = exp(-12! * Zeta(13) / (2^13 * Pi^12)). - Vaclav Kotesovec, Jan 01 2016

A256919 Decimal expansion of Sum_{k>=1} (zeta(4*k) - 1).

Original entry on oeis.org

0, 8, 6, 6, 6, 2, 9, 7, 6, 2, 6, 5, 7, 0, 9, 4, 1, 2, 9, 3, 2, 9, 7, 4, 6, 0, 2, 6, 2, 4, 9, 9, 9, 7, 5, 4, 7, 7, 7, 1, 7, 1, 8, 6, 6, 7, 9, 8, 0, 9, 1, 6, 6, 7, 2, 1, 2, 4, 6, 8, 7, 5, 7, 8, 0, 4, 9, 2, 2, 8, 7, 6, 0, 4, 0, 8, 4, 4, 9, 8, 9, 1, 2, 8, 2, 1, 7, 2, 2, 4, 1, 2, 0, 3, 0, 2, 2, 5, 4, 0, 6, 1, 7, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Examples

			0.0866629762657094129329746026249997547771718667980916672...
= -3 + Pi^4/90 + Pi^8/9450 + 691*Pi^12/638512875 + ...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights (2011) p. 265.

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[7/8 - (Pi/4)*Coth[Pi], 10, 104] // First]

Formula

Equals 7/8 - (Pi/4)*coth(Pi).
Equals Sum_{n>=2} 1/(n^4 - 1). - Vaclav Kotesovec, Dec 08 2020
Equals (1/2)* Sum_{n>=2} 1/(n^2-1) - (1/2)* Sum_{n>=2} 1/(n^2+1) = (3/4 - A100554)/2. - R. J. Mathar, Jan 22 2021

A351608 a(n) = n^10 * Sum_{d^2|n} 1 / d^10.

Original entry on oeis.org

1, 1024, 59049, 1049600, 9765625, 60466176, 282475249, 1074790400, 3486843450, 10000000000, 25937424601, 61977830400, 137858491849, 289254654976, 576650390625, 1100586418176, 2015993900449, 3570527692800, 6131066257801, 10250000000000, 16679880978201
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 14 2022

Keywords

Crossrefs

Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: A046951 (k=0), A340774 (k=1), A351600 (k=2), A351601 (k=3), A351602 (k=4), A351603 (k=5), A351604 (k=6), A351605 (k=7), A351606 (k=8), A351607 (k=9), this sequence (k=10).
Cf. A013670.

Programs

  • Mathematica
    f[p_, e_] := p^10*(p^(10*e) - p^(10*Floor[(e - 1)/2]))/(p^10 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = n^10*sumdiv(n, d, if (issquare(d), 1/d^5)); \\ Michel Marcus, Feb 15 2022

Formula

Multiplicative with a(p^e) = p^10*(p^(10*e) - p^(10*floor((e-1)/2)))/(p^10 - 1). - Sebastian Karlsson, Mar 03 2022
Sum_{k=1..n} a(k) ~ c * n^11, where c = zeta(12)/11 = 691*Pi^12/7023641625 = 0.090931... . - Amiram Eldar, Nov 13 2022

A293904 Decimal expansion of zeta(21).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 4, 7, 6, 9, 3, 2, 9, 8, 6, 7, 8, 7, 8, 0, 6, 4, 6, 3, 1, 1, 6, 7, 1, 9, 6, 0, 4, 3, 7, 3, 0, 4, 5, 9, 6, 6, 4, 4, 6, 6, 9, 4, 7, 8, 4, 9, 3, 7, 6, 0, 0, 2, 0, 7, 4, 8, 7, 3, 7, 6, 5, 9, 6, 8, 3, 9, 0, 8, 7, 8, 9, 8, 1, 5, 9, 8, 3, 3, 8, 7, 6, 6
Offset: 1

Views

Author

Frank Ellermann, Oct 19 2017

Keywords

Comments

Web searches find 1.0000004769329867878 in Python tools. Simon Plouffe published 1000 digits for zeta(9) up to zeta(2051) many years ago.

Examples

			1.000000476932986787806...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[21], 10, 100][[1]] (* Amiram Eldar, May 31 2021 *)

A096963 a(n) = Sum {0

Original entry on oeis.org

1, 2048, 177148, 4194304, 48828126, 362799104, 1977326744, 8589934592, 31381236757, 100000002048, 285311670612, 743012564992, 1792160394038, 4049565171712, 8649804864648, 17592186044416, 34271896307634
Offset: 1

Views

Author

Ralf Stephan, Jul 18 2004

Keywords

Comments

This is the member k=11 of the k-family sigma^#_k(n) := Sum {0
This notation appears in the Ono et al. link, Theorem 5 (with k=3, see A007331) and Theorem 8 (with k=11). - Wolfdieter Lang, Jan 13 2017

Examples

			G.f. = q + 2048*q^2 + 177148*q^3 + 4194304*q^4 + 48828126*q^5 + ...
		

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(2), 12), 18); A[2] + 2048*A[3] + 177148*A[4]; /* Michael Somos, Nov 30 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d^11 Boole[ OddQ[ n/d]], {d, Divisors[ n]}]]; (* Michael Somos, Nov 30 2014 *)
    a[ n_] := SeriesCoefficient[ With[{u1 = QPochhammer[ q]^8, u4 = QPochhammer[ q^4]^8}, q (u1^4 + 2072 q u4 u1^3 + 210048 q^2 u4^2 u1^2 + 5660672 q^3 u4^3 u1 + 45285376 q^4 u4^4) / u1 ], {q, 0, n}]; (* Michael Somos, Nov 30 2014 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (n/d%2) * d^11))}; /* Michael Somos, Nov 30 2014 */
    
  • Sage
    ModularForms( Gamma0(2), 12, prec=18).3; # Michael Somos, Nov 30 2014
    

Formula

G.f.: Sum_{n>0} n^11 * x^n / (1 - x^(2*n)).
a(n) = Sum {0
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 2^(11*e) and a(p^e) = (p^(11*e+11)-1)/(p^11-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^12, where c = 1365*zeta(12)/16384 = 691*Pi^12/7664025600 = 0.0833334904... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-11)*(1-1/2^s). - Amiram Eldar, Jan 09 2023

A321556 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^11.

Original entry on oeis.org

1, 2047, 177148, 4192255, 48828126, 362621956, 1977326744, 8585738239, 31381236757, 99951173922, 285311670612, 742649588740, 1792160394038, 4047587844968, 8649804864648, 17583591913471, 34271896307634, 64237391641579
Offset: 1

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Cf. A013670.

Programs

  • Mathematica
    f[p_, e_] := (p^(11*e + 11) - 1)/(p^11 - 1); f[2, e_] := (1023*2^(11*e + 1) + 1)/2047; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    apply( A321556(n)=sumdiv(n, d, (-1)^(n\d-1)*d^11), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^11*x^k/(1 + x^k). - Seiichi Manyama, Nov 25 2018
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (1023*2^(11*e+1)+1)/2047, and a(p^e) = (p^(11*e+11) - 1)/(p^11 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^12, where c = 2047*zeta(12)/24576 = 0.0833131... . (End)

A308637 Decimal expansion of Pi^3/Zeta(3).

Original entry on oeis.org

2, 5, 7, 9, 4, 3, 5, 0, 1, 6, 6, 6, 1, 8, 6, 8, 4, 0, 1, 8, 5, 5, 8, 6, 3, 6, 5, 7, 9, 3, 9, 6, 5, 1, 3, 2, 9, 0, 0, 5, 0, 9, 5, 2, 3, 2, 7, 1, 3, 1, 2, 2, 6, 0, 7, 0, 6, 1, 4, 0, 2, 1, 3, 4, 0, 6, 4, 9, 4, 3, 4, 9, 1, 3, 4, 9, 2, 5, 0, 6, 1, 4, 1, 2, 2, 5, 1
Offset: 2

Author

Seiichi Manyama, Aug 23 2019

Keywords

Crossrefs

-----+---------------------------------
n | Zeta(n)
-----+---------------------------------
2 | Pi^2 / 6 = A013661.
3 | Pi^3 / 25.79... = A002117.
4 | Pi^4 / 90 = A013662.
5 | Pi^5 / A309926 = A013663.
6 | Pi^6 / 945 = A013664.
7 | Pi^7 / A309927 = A013665.
8 | Pi^8 / 9450 = A013666.
9 | Pi^9 / A309928 = A013667.
10 | Pi^10 / 93555 = A013668.
11 | Pi^11 / A309929 = A013669.
12 | 691*Pi^12 / 638512875 = A013670.
...
Cf. A002432, A091925, A276120 (Zeta(3)/Pi^3).

Programs

  • Mathematica
    RealDigits[Pi^3/Zeta[3], 10, 100][[1]] (* Amiram Eldar, Aug 24 2019 *)
  • PARI
    Pi^3/zeta(3)

Formula

Pi^3/Zeta(3) = A091925/A002117.

Extensions

More terms from Amiram Eldar, Aug 24 2019

A056551 Smallest cube divisible by n divided by largest cube which divides n.

Original entry on oeis.org

1, 8, 27, 8, 125, 216, 343, 1, 27, 1000, 1331, 216, 2197, 2744, 3375, 8, 4913, 216, 6859, 1000, 9261, 10648, 12167, 27, 125, 17576, 1, 2744, 24389, 27000, 29791, 8, 35937, 39304, 42875, 216, 50653, 54872, 59319, 125, 68921, 74088, 79507, 10648
Offset: 1

Author

Henry Bottomley, Jun 25 2000

Keywords

Examples

			a(16) = 8 since smallest cube divisible by 16 is 64 and smallest cube which divides 16 is 8 and 64/8 = 8.
		

Programs

  • Mathematica
    f[p_, e_] := p^If[Divisible[e, 3], 0, 1]; a[n_] := (Times @@ (f @@@ FactorInteger[ n]))^3; Array[a, 100] (* Amiram Eldar, Aug 29 2019*)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%3, f[i,1], 1))^3; } \\ Amiram Eldar, Oct 28 2022

Formula

a(n) = A053149(n)/A008834(n) = A048798(n)*A050985(n) = A056552(n)^3.
From Amiram Eldar, Oct 28 2022: (Start)
Multiplicative with a(p^e) = 1 if e is divisible by 3, and a(p^e) = p^3 otherwise.
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(12)/(4*zeta(3))) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = A013670 * A330596 / (4*A002117) = 0.1557163105... . (End)
Dirichlet g.f.: zeta(3*s) * Product_{p prime} (1 + 1/p^(s-3) + 1/p^(2*s-3)). - Amiram Eldar, Sep 16 2023

A160972 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 13.

Original entry on oeis.org

1, 4095, 265720, 8386560, 61035156, 1088123400, 2306881200, 17175674880, 47071500840, 249938963820, 313842837672, 2228476723200, 1941507093540, 9446678514000, 16218261652320, 35175782154240, 36413889826860, 192757795939800, 122961939948120, 511874997903360, 612984472464000
Offset: 1

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^12 such that the quotient group Z^12 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 12 of A263950.

Programs

  • Mathematica
    b = 13; Table[Sum[MoebiusMu[n/d] d^(b - 1)/EulerPhi@ n, {d, Divisors@ n}], {n, 17}] (* Michael De Vlieger, Nov 27 2015 *)
    f[p_, e_] := p^(11*e - 11) * (p^12-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^11, d, if(ispower(d, 12), moebius(sqrtnint(d, 12))*sigma(n^11/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^12 - 1)*f[i,1]^(11*f[i,2] - 11)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_12(n)/J_1(n) where J_12 and J_1(n) = A000010(n) are Jordan functions. - R. J. Mathar, Jul 12 2011
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(11e-11) * (p^12-1) / (p-1).
For squarefree n, a(n) = A000203(n^11). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^12, where c = (1/12) * Product_{p prime} (1 + (p^11-1)/((p-1)*p^12)) = 0.1619398772... .
Sum_{k>=1} 1/a(k) = zeta(11)*zeta(12) * Product_{p prime} (1 - 2/p^12 + 1/p^23) = 1.0002481006668... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^12). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010
Previous Showing 11-20 of 33 results. Next