cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 104 results. Next

A243352 If n is k-th squarefree number [i.e., n = A005117(k)], a(n) = 2k-1; otherwise, when n is k-th nonsquarefree number [i.e., n = A013929(k)], a(n) = 2k.

Original entry on oeis.org

1, 3, 5, 2, 7, 9, 11, 4, 6, 13, 15, 8, 17, 19, 21, 10, 23, 12, 25, 14, 27, 29, 31, 16, 18, 33, 20, 22, 35, 37, 39, 24, 41, 43, 45, 26, 47, 49, 51, 28, 53, 55, 57, 30, 32, 59, 61, 34, 36, 38, 63, 40, 65, 42, 67, 44, 69, 71, 73, 46, 75, 77, 48, 50, 79, 81, 83, 52, 85, 87, 89
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2014

Keywords

Comments

Odd numbers occur (in order) at the positions given by squarefree numbers, A005117, and even numbers occur (in order) at the positions given by their complement, nonsquarefree numbers, A013929.

Crossrefs

Inverse: A088610. Cf. A243343, A072062.

Programs

Formula

If mu(n) = 0, a(n) = 2*A057627(n), otherwise, a(n) = 1 + 2 * A013928(n). [Here mu is Moebius mu-function, A008683, which is zero only when n is a nonsquarefree number, one of the numbers in A013929].
For all n, A000035(a(n)) = A008966(n) = A008683(n)^2, or equally, a(n) = mu(n) modulo 2.

A285111 Permutation of nonnegative integers: a(1) = 0, a(2) = 1, a(A005117(1+n)) = 2*a(n), a(A065642(n)) = 1 + 2*a(n).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 7, 5, 12, 16, 13, 14, 10, 24, 15, 32, 27, 26, 25, 28, 20, 48, 55, 9, 30, 11, 21, 64, 54, 52, 31, 50, 56, 40, 111, 96, 110, 18, 51, 60, 22, 42, 41, 49, 128, 108, 223, 17, 103, 104, 61, 62, 447, 100, 43, 112, 80, 222, 109, 192, 220, 57, 63, 36, 102, 120, 113, 44, 84, 82, 895, 98, 256, 99, 221, 216, 446, 34, 207, 23
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.

Crossrefs

Inverse: A285112.
Similar or related permutations: A243343, A243345, A277695, A284571.

Programs

  • Python
    from operator import mul
    from sympy import primefactors
    from sympy.ntheory.factor_ import core
    from functools import reduce
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a285328(n):
        if core(n) == n: return 1
        k=n - 1
        while k>0:
            if a007947(k) == a007947(n): return k
            else: k-=1
    def a013928(n): return sum([1 for i in range(1, n) if core(i) == i])
    def a(n):
        if n<3: return n - 1
        if core(n)==n: return 2*a(a013928(n))
        else: return 1 + 2*a(a285328(n))
    print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Apr 17 2017

Formula

a(1) = 0, a(2) = 1, and for n > 2, if A008683(n) <> 0 [when n is squarefree], a(n) = 2*a(A013928(n)), otherwise a(n) = 1 + 2*a(A285328(n)).

A373119 Cardinality of the largest subset of {1,...,n} such that no four distinct elements of this subset multiply to a square.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 17, 17, 17, 17, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 21, 21, 22, 22, 22, 22, 23, 23, 24, 24, 24, 24, 25, 25, 26, 26, 26
Offset: 1

Views

Author

Terence Tao, May 26 2024

Keywords

Comments

a(n) >= A000720(n).
a(n) ~ n/log n (Erdős-Sárközy-Sós). Best bounds currently are due to Pach-Vizer.
a(n+1)-a(n) is either 0 or 1 for any n. (Is equal to 1 when n+1 is prime.)
If "four" is replaced by "one", "two", "three", "five", or "any odd", one obtains A028391, A013928, A372306, A373178, and A373114 respectively.

Examples

			a(7)=6, because the set {1,2,3,4,5,7} has no four distinct elements multiplying to a square, but {1,2,3,4,5,6,7} has 1*2*3*6 = 6^2.
		

Crossrefs

Lower bounded by A000720.

Programs

  • Python
    from math import isqrt
    def is_square(n):
        return isqrt(n) ** 2 == n
    def valid_subset(A):
        length = len(A)
        for i in range(length):
            for j in range(i + 1, length):
                for k in range(j + 1, length):
                    for l in range(k + 1, length):
                        if is_square(A[i] * A[j] * A[k] * A[l]):
                            return False
        return True
    def largest_subset_size(N):
        from itertools import combinations
        for size in reversed(range(1, N + 1)):
            for subset in combinations(range(1, N + 1), size):
                if valid_subset(subset):
                    return size
    for N in range(1, 23):
        print(largest_subset_size(N))
    
  • Python
    from math import prod
    from functools import lru_cache
    from itertools import combinations
    from sympy.ntheory.primetest import is_square
    @lru_cache(maxsize=None)
    def A373119(n):
        if n==1: return 1
        i = A373119(n-1)+1
        if sum(1 for p in combinations(range(1,n),3) if is_square(n*prod(p))) > 0:
            a = [set(p) for p in combinations(range(1,n+1),4) if is_square(prod(p))]
            for q in combinations(range(1,n),i-1):
                t = set(q)|{n}
                if not any(s<=t for s in a):
                    return i
            else:
                return i-1
        else:
            return i # Chai Wah Wu, May 30 2024

Extensions

a(22)-a(37) from Michael S. Branicky, May 26 2024
a(38)-a(63) from Martin Ehrenstein, May 27 2024
a(64)-a(69) from Jinyuan Wang, Dec 30 2024

A373178 Cardinality of the largest subset of {1,...,n} such that no five distinct elements of this subset multiply to a square.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 15, 15, 16, 17, 18, 19, 19, 20, 20, 20, 21, 21, 21, 22, 23, 23, 24, 25, 26, 27, 28, 29, 30, 31, 31, 31, 31, 32, 33, 34, 34, 34, 35, 36, 37, 38, 39, 40, 41, 42, 42, 42, 43, 44, 45, 46, 46
Offset: 1

Views

Author

Terence Tao, May 26 2024

Keywords

Comments

a(n) >= A373114(n).
The limiting value of a(n)/n is unknown, but (if it exists), it is strictly less than 1, and at least A246849 ~ 0.828499... (see cited paper of Tao).
a(n+1)-a(n) is either 0 or 1 for any n.
If "five" is replaced by "one", "two", "three", "four", or "odd number of", one obtains A028391, A013928, A372306, A373119, A373114 respectively.

Examples

			a(8)=7, because the set {1,2,3,4,5,7,8} has no five distinct elements multiplying to a square, but {1,2,3,4,5,6,7,8} has 1*2*3*4*6 = 12^2.
		

Crossrefs

Similar to A028391, A013928, A372306, A373119. Lower bounded by A373114.

Programs

  • Python
    from math import isqrt
    def is_square(n):
        return isqrt(n) ** 2 == n
    def precompute_tuples(N):
        tuples = []
        for i in range(1, N + 1):
            for j in range(i + 1, N + 1):
                for k in range(j + 1, N + 1):
                    for l in range(k + 1, N + 1):
                        for m in range(l + 1, N + 1):
                            if is_square(i * j * k * l * m):
                                tuples.append((i, j, k, l, m))
        return tuples
    def valid_subset(A, tuples):
        set_A = set(A)
        for i, j, k, l, m in tuples:
            if i in set_A and j in set_A and k in set_A and l in set_A and m in set_A:
                return False
        return True
    def largest_subset_size(N, tuples):
        from itertools import combinations
        for size in reversed(range(1, N + 1)):
            for subset in combinations(range(1, N + 1), size):
                if valid_subset(subset, tuples):
                    return size
    for N in range(1, 26):
        print(largest_subset_size(N, precompute_tuples(N)))
    
  • Python
    from math import prod
    from functools import lru_cache
    from itertools import combinations
    from sympy.ntheory.primetest import is_square
    @lru_cache(maxsize=None)
    def A373178(n):
        if n==1: return 1
        i = A373178(n-1)+1
        if sum(1 for p in combinations(range(1,n),4) if is_square(n*prod(p))) > 0:
            a = [set(p) for p in combinations(range(1,n+1),5) if is_square(prod(p))]
            for q in combinations(range(1,n),i-1):
                t = set(q)|{n}
                if not any(s<=t for s in a):
                    return i
            else:
                return i-1
        else:
            return i # Chai Wah Wu, May 30 2024

Extensions

a(26)-a(38) from Michael S. Branicky, May 27 2024
a(39)-a(47) from Michael S. Branicky, May 30 2024
a(48)-a(70) from Martin Ehrenstein, May 31 2024

A081239 #{(i,j): mu(i)*mu(j) = 0, 1<=i,j<=n}, where mu=A008683 (Moebius function).

Original entry on oeis.org

0, 0, 0, 7, 9, 11, 13, 28, 45, 51, 57, 80, 88, 96, 104, 135, 145, 180, 192, 231, 245, 259, 273, 320, 369, 387, 440, 495, 517, 539, 561, 624, 648, 672, 696, 767, 793, 819, 845, 924, 952, 980, 1008, 1095, 1184, 1216, 1248, 1343, 1440, 1539, 1577, 1680, 1720
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 11 2003

Keywords

Comments

A081238(n) + a(n) + A081240(n) = n^2;
a(n) = a(n-1) + 2*n + 1 iff mu(n) = 0.

Examples

			n mu(n) ... n: 1 2 3 4 5 6 7 8
- ------ .... |----------------
1 .. +1 ..... | + - - 0 - + - 0
2 .. -1 ..... | - + + 0 + - + 0
3 .. -1 ..... | - + + 0 + - + 0
4 ... 0 ..... | 0 0 0 0 0 0 0 0
5 .. -1 ..... | - + + 0 + - + 0 a(8)=28, as there are
6 .. +1 ..... | + - - 0 - + - 0 28 '0's in the 8x8-square
7 .. -1 ..... | - + + 0 + - + 0
8 ... 0 ..... | 0 0 0 0 0 0 0 0.
		

Crossrefs

Cf. A057627.

Programs

  • Haskell
    a081239 n = length [() | u <- [1..n], v <- [1..n],
                             a008683 u * a008683 v == 0]
    -- Reinhard Zumkeller, Aug 03 2012

Formula

a(n) = n^2 - A013928(n+1)^2. - Vladeta Jovovic, Mar 12 2003

A107079 Minimal number of squared primes in a squarefree gap of length n.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 6, 7, 7, 7, 8, 9, 9, 10, 11, 12, 12, 13, 13, 14, 14, 15, 16, 17, 17, 17, 18, 18, 18, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 27, 27, 28, 29, 30, 30, 30, 31, 32, 32, 32, 32, 33, 33, 34, 34, 35, 35, 36, 37, 38, 38, 39, 40, 40, 40, 41, 42, 43, 43, 44, 45, 46, 46, 47
Offset: 1

Views

Author

Paul Barry, May 10 2005

Keywords

Crossrefs

One more than A013928. A left inverse of A005117.

Programs

  • Mathematica
    a[n_] := Sum[Boole[SquareFreeQ[k]], {k, 1, n-1}] + 1;
    Array[a, 100] (* Jean-François Alcover, Sep 11 2018, from A013928 *)
  • PARI
    A107079(n)=1+sum(k=1,n-1,bitand(moebius(k),1)) \\ Charles R Greathouse IV, Sep 22 2008
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A107079(n): return 1+sum(mobius(k)*((n-1)//k**2) for k in range(1,isqrt(n-1)+1)) # Chai Wah Wu, Jan 03 2024

Formula

a(n) = sum{k=0..n-1, moebius_mu(n-k-1) mod 2}.
a(n) = A013928(n+1) + A107078(n).
From Antti Karttunen, Oct 07 2016: (Start)
a(n) = 1 + A013928(n). [Cf. Charles R Greathouse IV's PARI-program.]
For all n >= 1, a(A005117(n)) = n. (End)

Extensions

New definition from Charles R Greathouse IV, Sep 22 2008

A246353 If n = Sum 2^e_i, e_i distinct, then a(n) = Position of (product prime_{e_i+1}) among squarefree numbers (A005117).

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 11, 19, 6, 10, 14, 28, 23, 44, 65, 129, 8, 15, 21, 41, 34, 69, 101, 203, 48, 94, 144, 283, 233, 470, 703, 1405, 9, 17, 26, 49, 40, 80, 120, 236, 57, 111, 168, 334, 279, 554, 833, 1661, 89, 176, 261, 521, 438, 873, 1304, 2610, 609, 1217, 1827, 3650, 3046, 6091, 9131
Offset: 0

Views

Author

Antti Karttunen, Aug 23 2014

Keywords

Comments

This is an inverse function to A048672. Note the indexing: here the domain starts from 0, but the range starts from 1, while in A048672 it is the opposite.
Sequence is obtained when the range of A019565 is compacted so that it becomes surjective on N, thus the logarithmic scatter plots look very similar. (Same applies to A064273). Compare also to the plot of A005940.

Crossrefs

Programs

  • PARI
    allocatemem(234567890);
    default(primelimit, 2^22)
    uplim_for_13928 = 13123111;
    v013928 = vector(uplim_for_13928); A013928(n) = v013928[n];
    v013928[1]=0; n=1; while((n < uplim_for_13928), if(issquarefree(n), v013928[n+1] = v013928[n]+1, v013928[n+1] = v013928[n]); n++);
    A019565(n) = {factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A246353(n) = 1+A013928(A019565(n));
    for(n=0, 478, write("b246353.txt", n, " ", A246353(n)));
    
  • Python
    from math import prod, isqrt
    from sympy import prime, mobius
    def A246353(n):
        m = prod(prime(i) for i,j in enumerate(bin(n)[-1:1:-1],1) if j=='1')
        return int(sum(mobius(k)*(m//k**2) for k in range(1, isqrt(m)+1))) # Chai Wah Wu, Feb 22 2025
  • Scheme
    (definec (A246353 n) (let loop ((n n) (i 1) (p 1)) (cond ((zero? n) (A013928 (+ 1 p))) ((odd? n) (loop (/ (- n 1) 2) (+ 1 i) (* p (A000040 i)))) (else (loop (/ n 2) (+ 1 i) p)))))
    

Formula

a(n) = A013928(1+A019565(n)) = 1 + A013928(A019565(n)).
a(n) = A064273(n) + 1.
For all n >= 0, A048672(a(n)) = n.
For all n >= 1, a(A048672(n)) = n.

A278100 Number of squarefree positive integers less than n^2.

Original entry on oeis.org

0, 3, 6, 11, 16, 23, 31, 39, 50, 61, 75, 89, 103, 120, 139, 157, 177, 199, 219, 243, 269, 297, 323, 351, 381, 412, 444, 477, 513, 547, 584, 624, 660, 703, 745, 789, 835, 882, 928, 977, 1025, 1073, 1124, 1174, 1230, 1285, 1342, 1400, 1460, 1523, 1582, 1645, 1708
Offset: 1

Views

Author

Jason Kimberley, Nov 12 2016

Keywords

Crossrefs

This is the row length sequence of A277648 and A278101.

Programs

  • Magma
    A278100:=func;
    [A278100(n):n in[1..53]]; // in cubic time
    
  • Mathematica
    Table[Count[Range[n^2], k_ /; SquareFreeQ@ k], {n, 53}] (* Michael De Vlieger, Nov 24 2016 *)
    Module[{nn=60,sf},sf=Accumulate[Table[If[SquareFreeQ[n],1,0],{n,0,nn^2}]];Table[sf[[k^2]],{k,nn}]] (* Harvey P. Dale, Nov 14 2020 *)
  • PARI
    a(n) = #select(x->issquarefree(x), vector(n^2-1, k, k)); \\ Michel Marcus, Nov 12 2016

Formula

a(n) = A013928(n^2).
a(n) ~ 6*n^2/Pi^2 + O(n). - Amiram Eldar, Mar 09 2021

A284571 Permutation of natural numbers: a(1) = 1, a(A005117(1+n)) = 2*a(n), a(A065642(1+n)) = 1 + 2*a(n).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 9, 5, 12, 32, 17, 18, 10, 24, 33, 64, 65, 34, 11, 36, 20, 48, 129, 7, 66, 19, 37, 128, 130, 68, 49, 22, 72, 40, 97, 96, 258, 14, 69, 132, 38, 74, 73, 21, 256, 260, 81, 13, 29, 136, 15, 98, 521, 44, 39, 144, 80, 194, 257, 192, 516, 23, 137, 28, 138, 264, 45, 76, 148, 146, 197, 42, 512, 147, 193, 520, 162, 26, 27
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Crossrefs

Inverse: A284572.
Similar or related permutations: A243343, A243345, A277695, A285111.

Programs

  • Python
    from operator import mul
    from sympy import primefactors
    from sympy.ntheory.factor_ import core
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a285328(n):
        if core(n) == n: return 1
        k=n - 1
        while k>0:
            if a007947(k) == a007947(n): return k
            else: k-=1
    def a013928(n): return sum(1 for i in range(1, n) if core(i) == i)
    def a(n):
        if n==1: return 1
        if core(n)==n: return 2*a(a013928(n))
        else: return 1 + 2*a(a285328(n) - 1)
    [a(n) for n in range(1, 121)] # Indranil Ghosh, Apr 17 2017

Formula

a(1) = 1, for n > 1, if A008683(n) <> 0 [when n is squarefree], a(n) = 2*a(A013928(n)), otherwise a(n) = 1 + 2*a(A285328(n)-1).

A285719 a(1) = 1, and for n > 1, a(n) = the largest squarefree number k such that n-k is also squarefree.

Original entry on oeis.org

1, 1, 2, 3, 3, 5, 6, 7, 7, 7, 10, 11, 11, 13, 14, 15, 15, 17, 17, 19, 19, 21, 22, 23, 23, 23, 26, 26, 26, 29, 30, 31, 31, 33, 34, 35, 35, 37, 38, 39, 39, 41, 42, 43, 43, 43, 46, 47, 47, 47, 46, 51, 51, 53, 53, 55, 55, 57, 58, 59, 59, 61, 62, 62, 62, 65, 66, 67, 67, 69, 70, 71, 71, 73, 74, 74, 74, 77, 78, 79, 79, 79, 82, 83, 83, 85, 86, 87, 87, 89, 89, 91, 91
Offset: 1

Views

Author

Antti Karttunen, May 02 2017

Keywords

Comments

For any n > 1 there is at least one decomposition of n as a sum of two squarefree numbers (cf. A071068 and the Mathematics Stack Exchange link). Of all pairs (x,y) of positive squarefree numbers for which x <= y and x+y = n, sequences A285718 and A285719 give the unique pair for which the difference y-x is the largest possible.
Note: a(n+1) differs from A070321(n) for the first time at n=50, with a(51) = 46, while A070321(50) = 47.

Examples

			For n=51 we see that 50 (2*5*5), 49 (7*7) and 48 (2^4 * 3) are all nonsquarefree (A013929). 47 (a prime) is squarefree, but 51 - 47 = 4 is not. On the other hand, both 46 (2*23) and 5 are squarefree numbers, thus a(51) = 46.
		

Crossrefs

Programs

  • Mathematica
    lsfn[n_]:=Module[{k=n-1},While[!SquareFreeQ[k]||!SquareFreeQ[n-k],k--];k]; Join[{1},Array[ lsfn,100,2]] (* Harvey P. Dale, Apr 27 2023 *)
  • Python
    from sympy.ntheory.factor_ import core
    def issquarefree(n): return core(n) == n
    def a285718(n):
        if n==1: return 0
        x = 1
        while True:
            if issquarefree(x) and issquarefree(n - x):return x
            else: x+=1
    def a285719(n): return n - a285718(n)
    print([a285719(n) for n in range(1, 121)]) # Indranil Ghosh, May 02 2017
  • Scheme
    (define (A285719 n) (- n (A285718 n)))
    (define (A285719 n) (if (= 1 n) n (let loop ((k (A013928 n))) (if (not (zero? (A008683 (- n (A005117 k))))) (A005117 k) (loop (- k 1))))))
    

Formula

a(n) = n - A285718(n).
Previous Showing 61-70 of 104 results. Next