cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A362870 a(n) = sigma_29(n), the sum of the 29th powers of the divisors of n.

Original entry on oeis.org

1, 536870913, 68630377364884, 288230376688582657, 186264514923095703126, 36845653355419807219092, 3219905755813179726837608, 154742505198902911050973185, 4710128697246313465298968573, 100000000186264514923632574038, 1586309297171491574414436704892
Offset: 1

Views

Author

Vaclav Kotesovec, May 07 2023

Keywords

Comments

In general, for k > 0, Sum_{n>=1} sigma_(4*k+1)(n) / exp(2*Pi*n) = Bernoulli(4*k+2)/(8*k+4). For k = 0, Sum_{n>=1} sigma(n)/exp(2*Pi*n) = 1/24 - 1/(8*Pi) = Bernoulli(2)/4 - 1/(8*Pi).
This formula can best be understood as a statement about the divided Bernoulli numbers b(n) = B(n) / n. Then you can say: If v is twice an odd number greater than 1 (i.e., v = 4*n + 2, a term of A016825 that is greater than 2), then b(v) = 2 * Sum_{j>=1} sigma_{v - 1}(j) / exp(2*Pi*j) = A358625(v) / A075180(v - 1). - Peter Luschny, May 08 2023

Crossrefs

Cf. A000203 (sigma_1), A001160 (sigma_5), A013957 (sigma_9), A013961 (sigma_13), A013965 (sigma_17), A013969 (sigma_21), A281959 (sigma_25).

Programs

  • Maple
    with(NumberTheory): seq(SumOfDivisors(k, 29), k = 1..20);
  • Mathematica
    DivisorSigma[29, Range[20]]
  • PARI
    for(n=1, 20, print1(direuler( p=2, n, 1 / (1 - X) /(1 - p^29*X))[n], ", "))
    
  • Python
    from sympy import divisor_sigma
    def A362870(n): return divisor_sigma(n,29) # Chai Wah Wu, May 07 2023

Formula

G.f.: Sum_{k>=1} k^29 * x^k / (1-x^k).
Dirichlet g.f.: zeta(s-29)*zeta(s).
Sum_{k=1..n} a(k) ~ zeta(30) * n^30 / 30.
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1723168255201/171864 = Bernoulli(30)/60.
Multiplicative with a(p^e) = (p^(29*e+29)-1)/(p^29-1). - Amiram Eldar, Oct 29 2023

A055707 Numbers k such that k | sigma_13(k) - phi(k)^13.

Original entry on oeis.org

1, 2, 12, 34, 42, 90, 170, 198, 402, 434, 456, 482, 494, 2046, 4086, 4518, 7520, 7605, 8622, 9632, 10924, 28280, 51570, 51714, 74124, 77724, 100172, 139653, 143136, 176760, 294588, 399980, 471826, 675356, 690534, 1358360, 1577696, 2089074, 2121940, 2136256
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_13(k) is the sum of the 13th powers of the divisors of k (A013961).

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[13, n]-EulerPhi[n]^13, n]==0, Print[n]], {n, 1, 10^5}]
  • PARI
    isok(n) = !((sigma(n, 13) - eulerphi(n)^13) % n); \\ Michel Marcus, Mar 02 2014

Extensions

Definition corrected and more terms from Michel Marcus, Mar 02 2014

A279926 a(n) = Sum_{k=1..n-1} sigma_3(k)*sigma_9(n-k).

Original entry on oeis.org

0, 1, 522, 24329, 454250, 4905766, 36532244, 207705929, 961214238, 3784166376, 13066960126, 40511160326, 114681233758, 300599979884, 737035375772, 1705830324553, 3751239987240, 7887626314003, 15927815870322, 31031953887704, 58508991327728, 107133058597170
Offset: 1

Views

Author

Seiichi Manyama, Dec 23 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[If[k == 0, 0, DivisorSigma[3, k]] DivisorSigma[9, n - k], {k, 0, n - 1}], {n, 22}] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    a(n) = sum(k=1, n-1, sigma(k, 3)*sigma(n-k, 9)) \\ Felix Fröhlich, Dec 23 2016

Formula

a(n) = (sigma_13(n) - 11*sigma_9(n) + 10*sigma_3(n))/2640.

A158033 a(n) = sigma_(Fibonacci(n)) (n).

Original entry on oeis.org

1, 3, 10, 73, 3126, 1686434, 96889010408, 9223376434903384065, 278128389443693527934467475898331, 10000000000000000277555756156289135105943945819724042094
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> numtheory[sigma][combinat[fibonacci](n)](n):
    seq(a(n), n=1..10);  # Alois P. Heinz, Feb 10 2020
  • Mathematica
    Table[DivisorSigma[Fibonacci[n],n],{n,10}] (* Harvey P. Dale, Nov 24 2013 *)
  • PARI
    a(n) = sigma(n, fibonacci(n)); \\ Michel Marcus, Feb 09 2020
  • Sage
    [sigma(n,fibonacci(n))for n in range(1,11)] # Zerinvary Lajos, Jun 04 2009
    

Extensions

Name edited by Michel Marcus, Feb 09 2020
Previous Showing 11-14 of 14 results.