A282048
Coefficients in q-expansion of E_4^5*E_6, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, 696, -34632, -167186976, -64422848328, -11387712944304, -1037073232984608, -48892286706157632, -1378097272692189000, -26188038166214133672, -364779879415169299632, -3952277018332870144608, -34798618196377082329632, -257403706082325167732976
Offset: 0
- G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 208.
-
terms = 14;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^5*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282332
Coefficients in q-expansion of E_4^3*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, -288, -325728, 11700864, 35176468896, 6601058210880, 438061091013504, 15173572442740992, 327251435243536800, 4913611331706352224, 55439979246339307200, 496425441863436557184, 3672747479405396310912, 23148319784349233726784
Offset: 0
-
terms = 14;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^3*E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282595
Coefficients in q-expansion of E_2^2*E_6, where E_2 and E_6 are respectively the Eisenstein series A006352 and A013973.
Original entry on oeis.org
1, -552, 7992, 460896, -3450504, -88161264, -728085024, -3775195968, -14894175240, -48567693576, -137214605232, -347495426784, -804758753568, -1733365307184, -3511286411328, -6753825302976, -12422812497672, -21971174382288, -37567247938344
Offset: 0
-
terms = 19;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E2[x]^2*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282596
Coefficients in q-expansion of E_2*E_4^2*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.
Original entry on oeis.org
1, -48, -196128, -33542976, -678319104, 12136422240, 509314518144, 7469015889792, 68272650653760, 458377820557584, 2454769903187520, 11035857376010304, 43103740076823552, 149954656815201504, 473331019057949952, 1375248429330791040, 3719662610125117632
Offset: 0
-
terms = 17;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E2[x]* E4[x]^2 *E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282547
Coefficients in q-expansion of E_2*E_4*E_6^2, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.
Original entry on oeis.org
1, -792, -648, 67840416, 3219716376, 16790031216, -1536150710304, -39898324202688, -522122582192040, -4650999065751096, -31648313780323632, -175516685804469024, -827282698744164768, -3413275186936731984, -12598131165680789568, -42296014044574387776
Offset: 0
-
terms = 16;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E2[x]*E4[x]*E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282780
Coefficients in q-expansion of E_2^3*E_6, where E_2 and E_6 are respectively the Eisenstein series A006352 and A013973.
Original entry on oeis.org
1, -576, 21168, 308736, -15034608, -39208320, 1590712128, 20299281408, 137107250640, 665776675008, 2599125524640, 8637331788288, 25350641846208, 67336913702016, 164742803455104, 376186503674880, 809848148403024, 1657081821679488, 3243133560510576
Offset: 0
Cf.
A282096 (E_2*E_6),
A282595 (E_2^2*E_6), this sequence (E_2^3*E_6).
-
terms = 19;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E2[x]^3*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A282792
Coefficients in q-expansion of E_2^2*E_4*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.
Original entry on oeis.org
1, -312, -122328, 1193376, 120735336, 123318576, -26119268064, -383848045248, -3132125965080, -18290795499096, -84925855577232, -331983655889184, -1133781877844448, -3470165144567184, -9697162366507968, -25093220330304576, -60786860467926552
Offset: 0
Cf.
A282102 (E_2*E_4*E_6), this sequence (E_2^2*E_4*E_6),
A282596 (E_2*E_4^2*E_6),
A282547 (E_2*E_4*E_6^2).
-
terms = 17;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^2*E6[x]*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A281371
Coefficients in q-expansion of (E_2*E_4 - E_6)^2/518400, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.
Original entry on oeis.org
0, 0, 1, 36, 492, 3608, 18828, 74760, 250352, 717984, 1866558, 4365580, 9635472, 19639032, 38559416, 71222616, 128258496, 219619968, 370366101, 597550068, 955638824, 1471571136, 2253173892, 3335433368, 4932972864, 7064391840, 10133162774, 14128072488, 19743952032, 26864847352
Offset: 0
-
with(numtheory); M:=100;
E := proc(k) local n, t1; global M;
t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
series(t1, q, M+1); end;
e2:=E(2); e4:=E(4); e6:=E(6);
t1:=series((e2*e4-e6)^2/518400,q,M+1);
seriestolist(t1);
-
terms = 30;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E2[x]*E4[x] - E6[x])^2/518400 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A281373
Coefficients in q-expansion of (E_2*E_4 - E_6)^2/(300*(E_6^2-E_4^3)), where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.
Original entry on oeis.org
0, 1, 60, 1680, 30280, 405678, 4369680, 39729200, 315045840, 2230260741, 14340456648, 84870112272, 467160257760, 2411818867430, 11759239565472, 54457051387536, 240692336520352, 1019498573990610, 4152992658207660, 16319887656747248, 62032458633713904, 228608370781579488
Offset: 0
-
with(numtheory); M:=100;
E := proc(k) local n, t1; global M;
t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
series(t1, q, M+1); end;
e2:=E(2); e4:=E(4); e6:=E(6);
t1:=series((e2*e4-e6)^2/518400,q,M+1);
t2:=series((e4^3-e6^2)/1728,q,M+1);
t3:=series(t1/t2,q,M+1);
seriestolist(t3);
-
terms = 22;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E2[x]*E4[x] - E6[x])^2/(300*(E6[x]^2 - E4[x]^3)) + O[x]^terms // CoefficientList[#, x]& // Abs (* Jean-François Alcover, Feb 27 2018 *)
A282328
Coefficients in q-expansion of E_4*E_6^3, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, -1272, 351432, 89559456, -28689603384, -3415837464144, -155926897275744, -3967939206760128, -65540990858009400, -777517458842153496, -7105797244669716432, -52584588767807410464, -326903749149928526688, -1755591468945924647184
Offset: 0
Cf.
A013974 (E_4*E_6 = E_10),
A282287 (E_4*E_6^2), this sequence (E_4*E_6^3).
-
terms = 14;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]*E6[x]^3 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
Comments