cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 154 results. Next

A282048 Coefficients in q-expansion of E_4^5*E_6, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, 696, -34632, -167186976, -64422848328, -11387712944304, -1037073232984608, -48892286706157632, -1378097272692189000, -26188038166214133672, -364779879415169299632, -3952277018332870144608, -34798618196377082329632, -257403706082325167732976
Offset: 0

Views

Author

Seiichi Manyama, Feb 05 2017

Keywords

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 208.

Crossrefs

Cf. A004009 (E_4), A013973 (E_6), A013974 (E_4*E_6 = E_10), A058550 (E_4^2*E_6 = E_14), A282000 (E_4^3*E_6), A282047 (E_4^4*E_6), this sequence (E_4^5*E_6).

Programs

  • Mathematica
    terms = 14;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^5*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

Formula

-24 * A281959(n) = 657931 * a(n) - 457920000 * A037947(n) for n > 0.

A282332 Coefficients in q-expansion of E_4^3*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, -288, -325728, 11700864, 35176468896, 6601058210880, 438061091013504, 15173572442740992, 327251435243536800, 4913611331706352224, 55439979246339307200, 496425441863436557184, 3672747479405396310912, 23148319784349233726784
Offset: 0

Views

Author

Seiichi Manyama, Feb 12 2017

Keywords

Crossrefs

Cf. A280869 (E_6^2), A282287 (E_4*E_6^2), A282292 (E_4^2*E_6^2 = E_10^2), this sequence (E_4^3*E_6^2).

Programs

  • Mathematica
    terms = 14;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^3*E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282595 Coefficients in q-expansion of E_2^2*E_6, where E_2 and E_6 are respectively the Eisenstein series A006352 and A013973.

Original entry on oeis.org

1, -552, 7992, 460896, -3450504, -88161264, -728085024, -3775195968, -14894175240, -48567693576, -137214605232, -347495426784, -804758753568, -1733365307184, -3511286411328, -6753825302976, -12422812497672, -21971174382288, -37567247938344
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2017

Keywords

Crossrefs

Cf. A282018 (E_2^3), this sequence (E_2^2*E_6), A282576 (E_2*E_6^2), A282253 (E_6^3).

Programs

  • Mathematica
    terms = 19;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E2[x]^2*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282596 Coefficients in q-expansion of E_2*E_4^2*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

1, -48, -196128, -33542976, -678319104, 12136422240, 509314518144, 7469015889792, 68272650653760, 458377820557584, 2454769903187520, 11035857376010304, 43103740076823552, 149954656815201504, 473331019057949952, 1375248429330791040, 3719662610125117632
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2017

Keywords

Crossrefs

Cf. A282102 (E_2*E_4*E_6), A282547 (E_2*E_4*E_6^2).

Programs

  • Mathematica
    terms = 17;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E2[x]* E4[x]^2 *E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282547 Coefficients in q-expansion of E_2*E_4*E_6^2, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

1, -792, -648, 67840416, 3219716376, 16790031216, -1536150710304, -39898324202688, -522122582192040, -4650999065751096, -31648313780323632, -175516685804469024, -827282698744164768, -3413275186936731984, -12598131165680789568, -42296014044574387776
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2017

Keywords

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6).

Programs

  • Mathematica
    terms = 16;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E2[x]*E4[x]*E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282780 Coefficients in q-expansion of E_2^3*E_6, where E_2 and E_6 are respectively the Eisenstein series A006352 and A013973.

Original entry on oeis.org

1, -576, 21168, 308736, -15034608, -39208320, 1590712128, 20299281408, 137107250640, 665776675008, 2599125524640, 8637331788288, 25350641846208, 67336913702016, 164742803455104, 376186503674880, 809848148403024, 1657081821679488, 3243133560510576
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2017

Keywords

Crossrefs

Cf. A282096 (E_2*E_6), A282595 (E_2^2*E_6), this sequence (E_2^3*E_6).

Programs

  • Mathematica
    terms = 19;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E2[x]^3*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282792 Coefficients in q-expansion of E_2^2*E_4*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

1, -312, -122328, 1193376, 120735336, 123318576, -26119268064, -383848045248, -3132125965080, -18290795499096, -84925855577232, -331983655889184, -1133781877844448, -3470165144567184, -9697162366507968, -25093220330304576, -60786860467926552
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2017

Keywords

Crossrefs

Cf. A282102 (E_2*E_4*E_6), this sequence (E_2^2*E_4*E_6), A282596 (E_2*E_4^2*E_6), A282547 (E_2*E_4*E_6^2).

Programs

  • Mathematica
    terms = 17;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^2*E6[x]*E6[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A281371 Coefficients in q-expansion of (E_2*E_4 - E_6)^2/518400, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 0, 1, 36, 492, 3608, 18828, 74760, 250352, 717984, 1866558, 4365580, 9635472, 19639032, 38559416, 71222616, 128258496, 219619968, 370366101, 597550068, 955638824, 1471571136, 2253173892, 3335433368, 4932972864, 7064391840, 10133162774, 14128072488, 19743952032, 26864847352
Offset: 0

Views

Author

N. J. A. Sloane, Feb 04 2017

Keywords

Comments

This is (up to a constant factor), the numerator of the expression phi defined in Cohn (2017) (see phi on page 114 of the Notices version).

Crossrefs

Cf. A006352, A004009, A013973, A145094, A281372 (the square root).

Programs

  • Maple
    with(numtheory); M:=100;
    E := proc(k) local n, t1; global M;
    t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
    series(t1, q, M+1); end;
    e2:=E(2); e4:=E(4); e6:=E(6);
    t1:=series((e2*e4-e6)^2/518400,q,M+1);
    seriestolist(t1);
  • Mathematica
    terms = 30;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    (E2[x]*E4[x] - E6[x])^2/518400 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A281373 Coefficients in q-expansion of (E_2*E_4 - E_6)^2/(300*(E_6^2-E_4^3)), where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 60, 1680, 30280, 405678, 4369680, 39729200, 315045840, 2230260741, 14340456648, 84870112272, 467160257760, 2411818867430, 11759239565472, 54457051387536, 240692336520352, 1019498573990610, 4152992658207660, 16319887656747248, 62032458633713904, 228608370781579488
Offset: 0

Views

Author

N. J. A. Sloane, Feb 04 2017

Keywords

Comments

This is (up to a constant factor), the function phi defined in Cohn (2017) (see phi on page 114 of the Notices version).

Crossrefs

Cf. A006352, A004009, A013973, A145094, A281371 (the numerator), A000594 (the denominator), A319134, A319294.

Programs

  • Maple
    with(numtheory); M:=100;
    E := proc(k) local n, t1; global M;
    t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
    series(t1, q, M+1); end;
    e2:=E(2); e4:=E(4); e6:=E(6);
    t1:=series((e2*e4-e6)^2/518400,q,M+1);
    t2:=series((e4^3-e6^2)/1728,q,M+1);
    t3:=series(t1/t2,q,M+1);
    seriestolist(t3);
  • Mathematica
    terms = 22;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    (E2[x]*E4[x] - E6[x])^2/(300*(E6[x]^2 - E4[x]^3)) + O[x]^terms // CoefficientList[#, x]& // Abs (* Jean-François Alcover, Feb 27 2018 *)

Formula

a(n) ~ exp(4*Pi*sqrt(n)) / (14400 * sqrt(2) * Pi^2 * n^(7/4)). - Vaclav Kotesovec, Jun 06 2018

A282328 Coefficients in q-expansion of E_4*E_6^3, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

Original entry on oeis.org

1, -1272, 351432, 89559456, -28689603384, -3415837464144, -155926897275744, -3967939206760128, -65540990858009400, -777517458842153496, -7105797244669716432, -52584588767807410464, -326903749149928526688, -1755591468945924647184
Offset: 0

Views

Author

Seiichi Manyama, Feb 12 2017

Keywords

Crossrefs

Cf. A004009 (E_4), A013973 (E_6).
Cf. A013974 (E_4*E_6 = E_10), A282287 (E_4*E_6^2), this sequence (E_4*E_6^3).

Programs

  • Mathematica
    terms = 14;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]*E6[x]^3 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
Previous Showing 21-30 of 154 results. Next