cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-46 of 46 results.

A371472 Least positive number k such that binomial(k^2,k) is divisible by n^2.

Original entry on oeis.org

1, 3, 8, 6, 9, 8, 10, 23, 16, 16, 16, 14, 23, 10, 9, 23, 45, 16, 27, 16, 34, 16, 33, 23, 94, 23, 105, 20, 77, 16, 54, 91, 16, 45, 19, 16, 83, 27, 23, 30, 58, 34, 114, 16, 16, 40, 133, 23, 130, 94, 45, 23, 75, 105, 16, 38, 27, 77, 145, 16, 106, 54, 47, 91, 49, 16, 190, 45, 80, 19, 123, 47, 283, 83, 94, 27, 40, 23, 137
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while(binomial(k^2, k)%n^2>0, k++); k;

A108131 Array read by antidiagonals: A(k,n) = C(n^k, n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 28, 84, 1, 1, 1, 120, 2925, 1820, 1, 1, 1, 496, 85320, 635376, 53130, 1, 1, 1, 2016, 2362041, 174792640, 234531275, 1947792, 1, 1, 1, 8128, 64304604, 45545029376, 782083984500, 131513824548, 85900584, 1
Offset: 0

Views

Author

Jonathan Vos Post, Jun 11 2007

Keywords

Examples

			Array begins:
k.C(n^k, n)
1.|.1.1....1........1..............1...................1..........................1...
2.|.1.1....6.......84...........1820...............53130....................1947792...
3.|.1.1...28.....2925.........635376...........234531275...............131513824548...
4.|.1.1..120....85320......174792640........782083984500...........6505247592703944...
5.|.1.1..496..2362041....45545029376....2475588476563125......306455244538856615280...
6.|.1.1.2016.64304604.11710951848960.7756055513916018750.14320984850603177651837856...
		

Crossrefs

Cf. A014062 (row 2), A107444 (row 3), A107446 (row 4).
Cf. A006516 (col 2), A026809 (col 3).

Programs

  • Magma
    C:= func< n | Binomial(n^6, n) >; [ C(n) : n in [0..7]]; /* Row 6 example */

A227052 a(n) = (n^2)! / (n^2-n)! = number of ways of placing n labeled balls into n^2 labeled boxes with at most one ball in each box.

Original entry on oeis.org

1, 1, 12, 504, 43680, 6375600, 1402410240, 432938943360, 178462987637760, 94670977328928000, 62815650955529472000, 50963773003971232204800, 49633807532904958383820800, 57141374006987657125324185600, 76763145767753986733306290176000, 119005648371962652004288345681920000
Offset: 0

Views

Author

Alex Ratushnyak, Jun 29 2013

Keywords

Comments

Product of the entries in row n of an n X n square array with elements 1..n^2 listed in increasing order by rows. - Wesley Ivan Hurt, Mar 31 2025

Crossrefs

Cf. A014062.

Programs

  • Mathematica
    Table[(n^2)!/(n^2-n)!,{n,0,20}] (* Harvey P. Dale, Aug 10 2017 *)
  • Python
    import math
    for n in range(20):
        print(math.factorial(n*n)//math.factorial(n*n-n), end=', ')

A306763 G.f. A(x) satisfies: Sum_{n>=0} A(x)^(n^2) * x^n = Sum_{n>=0} binomial(n^2,n) * x^n.

Original entry on oeis.org

1, 5, 63, 1372, 41814, 1605215, 73586824, 3906566501, 235444126392, 15881634865780, 1185873283860557, 97147220190772317, 8665813010430379775, 836342349269443514470, 86843462603384158258103, 9655074380695222955712860, 1144404915485406530977640253, 144066096386630152751096708253, 19197014710932516253131393942286, 2699479675453423906131984772100102
Offset: 0

Views

Author

Paul D. Hanna, May 04 2019

Keywords

Examples

			G.f.: A(x) = 1 + 5*x + 63*x^2 + 1372*x^3 + 41814*x^4 + 1605215*x^5 + 73586824*x^6 + 3906566501*x^7 + 235444126392*x^8 + 15881634865780*x^9 + ...
such that the following series are equal:
B(x) = 1 + A(x)*x + A(x)^4*x^2 + A(x)^9*x^3 + A(x)^16*x^4 + A(x)^25*x^5 + A(x)^36*x^6 + A(x)^49*x^7 + A(x)^64*x^8 + ...
B(x) = 1 + x + 6*x^2 + 84*x^3 + 1820*x^4 + 53130*x^5 + 1947792*x^6 + 85900584*x^7 + 4426165368*x^8 + 260887834350*x^9 + ... + binomial(n^2,n) * x^n + ...
		

Crossrefs

Cf. A014062 (binomial(n^2,n)).

Programs

  • Mathematica
    a[n_] := Module[{A = {1}}, For[i = 1, i <= n, i++, AppendTo[A, 0]; A[[-1]] = -Coefficient[Sum[x^m*(A.x^Range[0, Length[A]-1])^(m^2) - x^m* Binomial[m^2, m], {m, 0, Length[A]}], x, Length[A]]]; A[[n+1]] ];
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, May 07 2019, from PARI *)
  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); A[#A] = -polcoeff( sum(m=0,#A, x^m*Ser(A)^(m^2) - x^m*binomial(m^2,m) ), #A) );A[n+1]}
    for(n=0,20,print1(a(n),", "))

A365628 a(n) = binomial(primorial(n), n).

Original entry on oeis.org

1, 2, 15, 4060, 78738660, 545754554499462, 1018081517447240182211275, 1793004475784081302284255717158418120, 1943305407393725342965469143054357602760779899437185, 3772316402417100592416011698371929155605067111502494326520988270728160
Offset: 0

Views

Author

Darío Clavijo, Sep 13 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = binomial(vecprod(primes(n)), n); \\ Michel Marcus, Sep 14 2023
  • Python
    from sympy import binomial, primorial
    a = lambda n: binomial(primorial(n), n)
    print([a(n) for n in range(1,10)])
    

Formula

a(n) = binomial(A002110(n), n).

A371474 Numbers k such that binomial(k^2,k) == 0 (mod k^3).

Original entry on oeis.org

1, 2184, 6552, 12870, 13860, 19530, 23100, 33660, 40755, 47880, 51051, 58995, 81396, 88920, 101010, 113553, 114114, 114855, 121800, 125970, 136136, 141372, 142290, 142324, 145860, 150535, 154583, 157080, 158928, 164424, 171080, 180180, 193732, 195104, 197340, 214890, 225680, 229908, 230230, 230724, 238602, 243542, 249964, 253080, 257712, 267960, 284867, 291720, 294525, 297414, 300696
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2024

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = binomial(n^2, n)%n^3==0;
    
  • Python
    from itertools import count, islice
    from math import comb
    def A371474_gen(): # generator of terms
        return filter(lambda k:not comb(k**2,k)%(k**3),count(1))
    A371474_list = list(islice(A371474_gen(),3)) # Chai Wah Wu, Mar 25 2024

Extensions

More terms from Vaclav Kotesovec, Mar 26 2024
Previous Showing 41-46 of 46 results.