A187297 Number of 2-step one space leftwards or up, two space rightwards or down asymmetric rook's tours on an n X n board summed over all starting positions.
0, 4, 18, 40, 70, 108, 154, 208, 270, 340, 418, 504, 598, 700, 810, 928, 1054, 1188, 1330, 1480, 1638, 1804, 1978, 2160, 2350, 2548, 2754, 2968, 3190, 3420, 3658, 3904, 4158, 4420, 4690, 4968, 5254, 5548, 5850, 6160, 6478, 6804, 7138, 7480, 7830, 8188, 8554
Offset: 1
Links
- R. H. Hardin and Vincenzo Librandi, Table of n, a(n) for n = 1..1000 (first 50 terms from R. H. Hardin)
- G. L. Alexanderson and John E. Wetzel, Divisions of Space by Parallels, Transactions of the American Mathematical Society, Volume 291, Number 1 (September 1985), 366-377.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[Abs[ 2^(n)*Coefficient[ CharacteristicPolynomial[ Array[KroneckerDelta[#1, #2]*(1/2 - 1) + 1 &, {n, n}], x], x]], {n, 2, 55}] (* John M. Campbell, Jun 21 2011 *) Table[If[n == 0, 0, n + n^2 - 2], {n, 0, 200, 2}] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *) CoefficientList[Series[2 x (2 + 3 x - x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Feb 08 2014 *)
-
PARI
a(n)=if(n>1, 4*n^2-6*n, 0) \\ Charles R Greathouse IV, Aug 08 2016
Formula
Empirical: a(n) = 4*n^2 - 6*n = 2*A014107(n) for n>1 (this is now known to be correct - see other comments).
a(n) = +3*a(n-1) -3*a(n-2) +1*a(n-3).
G.f.: 2*x^2*(2+3*x-x^2)/(1-x)^3.
Comments