cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A212583 Primes p such that p^2 divides 6^(p-1) - 1.

Original entry on oeis.org

66161, 534851, 3152573
Offset: 1

Views

Author

Felix Fröhlich, May 22 2012

Keywords

Comments

Base 6 Wieferich primes.
Next term > 4.119*10^13. [See Fischer link]

References

  • P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, 1996, page 347

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000000]], PowerMod[6, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)
  • PARI
    N=10^9; default(primelimit,N);
    forprime(n=2,N,if(Mod(6,n^2)^(n-1)==1,print1(n,", ")));
    \\ Joerg Arndt, May 01 2013

A174422 1st Wieferich prime base prime(n).

Original entry on oeis.org

1093, 11, 2, 5, 71, 2, 2, 3, 13, 2, 7, 2, 2, 5
Offset: 1

Views

Author

Jonathan Sondow, Mar 19 2010

Keywords

Comments

Smallest prime p such that p^2 divides prime(n)^(p-1) - 1.
Smallest prime p such that p divides the Fermat quotient q_p((prime(n)) = (prime(n)^(p-1) - 1)/p.
See additional comments, links, and cross-refs in A039951.
a(15) = A039951(47) > 4.1*10^13.

Examples

			a(1) = 1093 is the first Wieferich prime A001220. a(2) = 11 is the first Mirimanoff prime A014127.
		

Crossrefs

Cf. A001220, A014127, A039951 = smallest prime p such that p^2 divides n^(p-1) - 1, A125636 = smallest prime p such that prime(n)^2 divides p^(prime(n)-1) - 1.
Cf. A178871 = 2nd Wieferich prime base prime(n).

Programs

  • Mathematica
    f[n_] := Block[{b = Prime@ n, p = 2}, While[ PowerMod[b, p - 1, p^2] != 1, p = NextPrime@ p]; p]; Array[f, 14]
  • PARI
    forprime(a=2, 20, forprime(p=2, 10^9, if(Mod(a, p^2)^(p-1)==1, print1(p, ", "); next({2}))); print1("--, ")) \\ Felix Fröhlich, Jun 27 2014

Formula

a(n) = A039951(prime(n)).
a(n) = 2 if and only if prime(n) == 1 (mod 4). [Jonathan Sondow, Aug 29 2010]

A242741 Primes p such that p^2 divides 15^(p-1) - 1.

Original entry on oeis.org

29131, 119327070011
Offset: 1

Views

Author

Felix Fröhlich, May 21 2014

Keywords

Comments

Base 15 Wieferich primes. According to Richard Fischer there is no other term up to approximately 5*10^13.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000000]], PowerMod[15, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)
  • PARI
    forprime(n=2, 10^9, if(Mod(15, n^2)^(n-1)==1, print1(n, ", ")));

A242958 Numbers n such that 3^phi(n) == 1 (mod n^2), where phi(n) is Euler's totient function.

Original entry on oeis.org

11, 22, 44, 55, 110, 220, 440, 880, 1006003, 2012006, 4024012, 11066033, 22132066, 44264132, 55330165, 88528264, 110660330, 221320660, 442641320, 885282640, 1770565280, 56224501667, 112449003334, 224898006668, 393571511669, 449796013336, 618469518337, 787143023338
Offset: 1

Views

Author

Felix Fröhlich, May 27 2014

Keywords

Comments

a(21) > 10^9.
All listed composite terms are multiples of the two known primes in this sequence, 11 and 1006003, the only known base 3 Wieferich primes.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], Mod[3^EulerPhi[#], #^2] == 1 &] (* Alonso del Arte, Jun 02 2014 *)
  • PARI
    for(n=2, 10^9, if(Mod(3, n^2)^(eulerphi(n))==1, print1(n, ", ")))

Extensions

Terms a(21) and beyond from Giovanni Resta, Jan 27 2020

A242982 Primes p such that p^2 divides 20^(p-1) - 1.

Original entry on oeis.org

281, 46457, 9377747, 122959073
Offset: 1

Views

Author

Felix Fröhlich, May 28 2014

Keywords

Comments

Base 20 Wieferich primes. According to Richard Fischer, there is no other term up to approximately 5*10^13.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000000]], PowerMod[20, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)
  • PARI
    forprime(n=2, 10^9, if(Mod(20, n^2)^(n-1)==1, print1(n, ", ")));

A244065 Pseudoprimes to base 3 that are not squarefree.

Original entry on oeis.org

121, 3751, 4961, 7381, 11011, 29161, 32791, 142901, 228811, 239701, 341341, 551881, 566401, 595441, 671671, 784201, 856801, 1016521, 1237951, 1335961, 1433971, 1804231
Offset: 1

Views

Author

Felix Fröhlich, Jun 19 2014

Keywords

Comments

Must be divisible by the square of a Mirimanoff prime, A014127. - Charles R Greathouse IV, Jun 21 2014

Crossrefs

Programs

  • PARI
    for(n=2, 10^9, if(!isprime(n) && Mod(3, n)^(n-1)==1 && !issquarefree(n), print1(n, ", ")))
    
  • PARI
    list(lim)=my(M=[11,1006003],v=List(),p2);for(i=1,#M,p2=M[i]^2;forstep(n=p2,lim,p2,if(Mod(3,n)^(n-1)==1,listput(v,n))));Set(v) \\ Good for lim <= 9.4 * 10^29; Charles R Greathouse IV, Jun 21 2014

A244260 Primes p such that p^2 divides 18^(p-1) - 1.

Original entry on oeis.org

5, 7, 37, 331, 33923, 1284043
Offset: 1

Views

Author

Felix Fröhlich, Jun 24 2014

Keywords

Comments

Base 18 Wieferich primes. According to Richard Fischer there is no other term up to approximately 5*10^13.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000000]], PowerMod[18, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)
  • PARI
    forprime(n=2, 10^9, if(Mod(18, n^2)^(n-1)==1, print1(n, ", ")));

A178871 2nd Wieferich prime base prime(n).

Original entry on oeis.org

3511, 1006003, 20771, 491531
Offset: 1

Views

Author

Jonathan Sondow, Jun 20 2010, Jun 24 2010

Keywords

Comments

2nd prime p such that p^2 divides prime(n)^(p-1) - 1.
2nd prime p such that p divides the Fermat quotient q_p(p_n) = ((p_n)^(p-1) - 1)/p, where p_n = prime(n).
a(5) is unknown: 71 is the only known prime p that divides q_p(11).
If a(5) is found, the sequence continues a(6) = 863, a(7) = 3, a(8) = 7, a(9) = 2481757.
See additional comments, references, links, and cross-refs in A039951 and A174422.

Examples

			a(1) = 3511 is the 2nd Wieferich prime A001220(2).
a(2) = 1006003 is the 2nd Mirimanoff prime A014127(2).
		

Crossrefs

Cf. A039951 = smallest prime p such that p^2 divides n^(p-1) - 1, A174422 = first Wieferich prime base prime(n).

Programs

  • PARI
    {default(primelimit, 10^7); for(n=1, 9, a=prime(n); c=0; forprime(p=2, 10^7, if(Mod(a, p^2)^(p-1)==1, c++; if(c==2, print1(p, ", "); next(2)))); print1(">10^7, "))} \\ Jens Kruse Andersen, Jun 18 2014

A109641 Composite n such that binomial(3n, n) == 3^k (mod n) for some integer k > 0.

Original entry on oeis.org

4, 9, 15, 25, 27, 34, 36, 49, 51, 57, 63, 68, 75, 81, 87, 93, 111, 121, 125, 129, 132, 138, 141, 153, 155, 159, 169, 177, 237, 249, 258, 261, 264, 267, 274, 276, 279, 289, 298, 303, 324, 339, 343, 357, 361, 375, 381, 387, 393, 411, 417, 423, 441, 447, 453, 477
Offset: 1

Views

Author

Ryan Propper, Aug 05 2005

Keywords

Comments

Includes p^k for k >= 2 and p > 2 in A019334 but not in A014127, as binomial(3n,n) is coprime to p and 3 is a primitive root mod p^k. - Robert Israel, Nov 12 2017

Examples

			Binomial(3*34,34) == 3^6 (mod 34), so 34 is a member.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local p,m,k,t;
      if isprime(n) then return false fi;
      p:= padic:-ordp(n,3);
      p:= p + numtheory:-order(3, n/3^p);
      m:= binomial(3*n,n) mod n;
      t:= 1;
      for k from 1 to p do
        t:= t*3 mod n;
        if t = m then return true fi;
      od:
    false
    end proc;
    select(filter, [$2..1000]); # Robert Israel, Nov 12 2017
  • Mathematica
    okQ[n_] := Module[{p, m}, If[PrimeQ[n], Return[False]]; p = IntegerExponent[n, 3]; p = p + MultiplicativeOrder[3, n/3^p]; m = Mod[Binomial[3n, n], n]; AnyTrue[Range[p], m == PowerMod[3, #, n]&]];
    Select[Range[2, 500], okQ] (* Jean-François Alcover, Mar 27 2019, after Robert Israel *)

Extensions

Corrected and extended by Max Alekseyev, Sep 13 2009
Edited by Max Alekseyev, Sep 20 2009

A125774 Numbers k such that 3^k mod k = 3^k mod k^2.

Original entry on oeis.org

1, 2, 3, 4, 9, 11, 20, 22, 27, 33, 81, 99, 220, 243, 644, 729, 1220, 2187, 2420, 5060, 6561, 7128, 8368, 13420, 14740, 19683, 23620, 40573, 55660, 59049, 145420, 147620, 162140, 177147, 237820, 259820, 290620, 308660, 339020, 447740, 531441, 548660
Offset: 1

Views

Author

Alexander Adamchuk, Dec 07 2006

Keywords

Comments

This sequence includes all powers of 3. a(2) = 2, a(3) = 3, a(6) = 11 and a(45) = 1006003 are the only known primes in this sequence.

Crossrefs

Cf. A014127 (Primes p such that p^2 divides 3^(p-1) - 1).
Cf. A068535 (Numbers k such that 2^k mod k = 2^k mod k^2).
Cf. A125773 (Numbers k, that are not powers of 2, such that 2^k mod k = 2^k mod k^2).
Cf. A125775 (Numbers k such that 5^k mod k = 5^k mod k^2).

Programs

  • Mathematica
    Do[f=PowerMod[3,n,n];g=PowerMod[3,n,n^2];If[f==g,Print[n]],{n,1,1100000}]
    Select[Range[600000],PowerMod[3,#,#]==PowerMod[3,#,#^2]&] (* Harvey P. Dale, Feb 21 2013 *)
Previous Showing 11-20 of 45 results. Next