cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A102123 Iccanobirt numbers (13 of 15): a(n) = R(R(a(n-1)) + a(n-2) + R(a(n-3))), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 42, 26, 711, 761, 49, 279, 8811, 1651, 44311, 38141, 55006, 45901, 34108, 990681, 161132, 5891031, 6129461, 8041777, 45820251, 74839842, 60558487, 202825861, 635089352, 309192535, 7549098331, 8252802091
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[R[a[n-1]]+a[n-2]+R[a[n-3]]];Table[a[n], {n, 0, 40}]

Formula

a(n) = A004086(A102115(n)).

A102118 Iccanobirt numbers (8 of 15): a(n) = R(a(n-1) + a(n-2) + a(n-3)), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 24, 26, 18, 86, 31, 531, 846, 8041, 8149, 63071, 16297, 71578, 649051, 629637, 6620531, 9129987, 55108361, 97885807, 551421261, 924514407, 5741283751, 9149127127, 58252941851, 92725334137, 511304721061
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]+a[n-2]+a[n-3]];Table[a[n], {n, 0, 40}]
    Transpose[NestList[{#[[2]],#[[3]],FromDigits[Reverse[IntegerDigits[Total[ #]]]]}&,{0,0,1},40]][[1]] (* Harvey P. Dale, Dec 04 2012 *)

Extensions

Incorrect formula removed by Georg Fischer, Dec 18 2020

A101759 Iccanobif prime indices: Indices of prime numbers in A001129.

Original entry on oeis.org

3, 4, 5, 7, 13, 39, 51, 65, 254, 315, 361, 423, 1109, 1497, 1701, 3711, 3814, 3847
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 15 2004

Keywords

Comments

No more terms through 10^4.

Crossrefs

Programs

A101763 Iccanobif semiprime indices: Indices of semiprime numbers in A001129.

Original entry on oeis.org

8, 10, 15, 17, 35, 37, 47, 53, 62, 66, 74, 79, 110, 127, 146, 214, 231, 241, 242, 245, 250, 277, 293, 302, 343, 485, 525, 550, 599, 638, 687, 733, 805, 814
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 15 2004

Keywords

Comments

This sequence also includes 881, 946, 954, 1086, 1753, and 1771. It might or might not include 838, 849, 1073, 1667, 1741, 1870, 2155, and 2478, but the required factoring proved rather difficult. There are no further terms below 2478. - Lucas A. Brown, Nov 19 2022

Crossrefs

Extensions

Missing 302 inserted and 525 added by Sean A. Irvine, Apr 29 2022
a(28)-a(34) from Lucas A. Brown, Nov 21 2022

A101765 Iccanobif semiprime indices: Indices of semiprime numbers in A014259.

Original entry on oeis.org

8, 9, 15, 16, 18, 22, 32, 37, 46, 53, 61, 62, 64, 79, 82, 106, 121, 129, 149, 153, 229, 241, 266, 301, 381, 411, 502
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 15 2004

Keywords

Comments

This sequence also includes 742, 987, 1147, 1246, 1337, 1373, 1454, 1493, 1537, 1835, 1967, and 2265. It might or might not include 622, 630, 647, 817, 1247, 1402, 1422, 1477, 1649, 1781, 1818, 1867, 1874, and 2115, but the required factoring proved rather difficult. There are no further terms below 2265. - Lucas A. Brown, Nov 12 2022

Crossrefs

Extensions

a(27) from Lucas A. Brown, Nov 12 2022

A101766 Iccanobif semiprime indices: Indices of semiprime numbers in A014260.

Original entry on oeis.org

8, 16, 18, 21, 26, 38, 42, 44, 49, 54, 55, 57, 61, 67, 77, 78, 115, 123, 134, 145, 151, 154, 202, 218, 249, 286, 349, 403, 498, 539, 647
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 15 2004

Keywords

Comments

This sequence also includes 790, 1161, 1347, 1418, 1595, 1761, and 2018. It might or might not include 769, 1394, 1795, 1983, 2093, 2178, but the required factoring proved rather difficult. There are no further terms below 2178. - Lucas A. Brown, Nov 12 2022

Crossrefs

Programs

Extensions

Offset changed to 1 by Jinyuan Wang, Aug 01 2021
a(31) from Lucas A. Brown, Nov 12 2022

A101762 Iccanobif prime indices: Indices of prime numbers in A014260.

Original entry on oeis.org

3, 4, 5, 7, 11, 13, 19, 22, 25, 30, 39, 71, 81, 98, 1041, 2942, 4377, 10410
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 15 2004

Keywords

Comments

No more terms through 11000.

Crossrefs

Extensions

Offset changed to 1 by Jinyuan Wang, Aug 02 2021

A072210 a(1)=a(2)=1; a(n)=reverse(reverse(a(n-1))+reverse(a(n-2))) for n > 2.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 31, 12, 43, 55, 98, 441, 332, 773, 16, 834, 994, 739, 6341, 3732, 9083, 2816, 1999, 37161, 46162, 73324, 10586, 838011, 933971, 771092, 615964, 396957, 9029221, 2098891, 1118123, 3107025, 4215248, 73123631, 16275022, 89398653, 95664775
Offset: 1

Views

Author

Joseph L. Pe, Jul 03 2002

Keywords

Comments

I call this sequence the Fibonacci mirror sequence for the following reason. For n>2, the expression "a(n)=a(n-1)+a(n-2)" is a valid equation if read backwards. For example, "a(9)=a(8)+a(7)" is "43=12+31", which read backwards is 13+21=34, a valid equation.
Reverse(a(n))=reverse(a(n-1))+reverse(a(n-2)). a(n) is the least natural number k such that reverse(k)=reverse(a(n-1))+reverse(a(n-2)).
(Added Jul 06 2002) Actually, the previous comments are true only if reverse(a(n-1))+reverse(a(n-2)) does not end in the digit 0. It ends in 0 for n = 15, but for no other n < 3 * 10^4. Mark Lewis claims that n = 15 is the only such value of n. He observes that the first fifteen terms of a(n) are the reverses of the first fifteen terms of the Fibonacci sequence. The later terms of a(n) are the reverses of the terms of the Fibonacci sequence starting with 377, 61 (excluding these initial two terms). Lewis' argument depends on his assertion that the (377,61)-sequence is, modulo 10, periodic with period 12 and with no zeros-one for which he, as yet, offers only empirical evidence.

Examples

			a(9)=reverse(reverse(a(8))+reverse(a(7)))=reverse(21+13)=43.
		

Crossrefs

Programs

  • Mathematica
    rev[n_] := FromDigits[Reverse[IntegerDigits[n]]]; r = {1, 1}; For[i = 1, i < 30, i++, l = Length[r]; r = Append[r, rev[rev[r[[l]]] + rev[r[[l - 1]]]]]]; r
    rev[n_]:=FromDigits[Reverse[IntegerDigits[n]]]; nxt[{a_,b_}]:={b,rev[ rev[ a]+ rev[b]]}; Transpose[NestList[nxt,{1,1},50]][[1]] (* Harvey P. Dale, Apr 25 2014 *)

Extensions

More terms from Harvey P. Dale, Apr 25 2014

A101761 Iccanobif prime indices: Indices of prime numbers in A014259.

Original entry on oeis.org

3, 4, 5, 7, 21, 35, 97, 830, 947, 2627
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 15 2004

Keywords

Comments

No more terms through 10^4.

Crossrefs

A172524 Partial sums of Iccanobif numbers A001129.

Original entry on oeis.org

0, 1, 2, 4, 7, 12, 20, 33, 72, 196, 710, 1546, 2599, 6738, 19553, 80688, 185625, 978142, 2432840, 12112678, 29466988, 39202128, 40962878, 41948928, 42570288, 42684103, 43265540, 44518036, 52194742, 65214030, 159581828, 337649208
Offset: 0

Views

Author

Jonathan Vos Post, Feb 06 2010

Keywords

Comments

The only primes in this sequence are: 2, 7 and 19553. The squares in this sequence begin: 0, 1, 4, 196.

Examples

			a(14) = 0 + 1 + 1 + 2 + 3 + 5 + 8 + 13 + 39 + 124 + 514 + 836 + 1053 + 4139 + 12815 = 19553 is prime. a(31) = 0 + 1 + 1 + 2 + 3 + 5 + 8 + 13 + 39 + 124 + 514 + 836 + 1053 + 4139 + 12815 + 61135 + 104937 + 792517 + 1454698 + 9679838 + 17354310 + 9735140 + 1760750 + 986050 + 621360 + 113815 + 581437 + 1252496 + 7676706 + 13019288 + 94367798 + 178067380.
		

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,Total[FromDigits/@Reverse/@IntegerDigits[{a,b}]]};Accumulate[ Transpose[NestList[nxt,{0,1},40]][[1]]] (* Harvey P. Dale, Apr 04 2015 *)

Formula

a(n) = SUM[i=0..n] A001129(i) = SUM[i=0..n] {a(0) = 0, a(1) = 1, a(i+2) = R(a(i)) + R(a(i+1))} = SUM[i=0..n] A001129(i) = SUM[i=1..n] {a(0) = 0, a(1) = 1, a(i+2) = A004086(a(i)) + A004086(a(i+1))}.
Previous Showing 21-30 of 31 results. Next