cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A259852 Numerators of the terms of Lehmer's series S_2(2), where S_k(x) = Sum_{n>=1} n^k*x^n/binomial(2*n, n).

Original entry on oeis.org

1, 8, 18, 128, 200, 192, 784, 8192, 10368, 25600, 30976, 147456, 173056, 401408, 10240, 8388608, 9469952, 7077888, 23658496, 20971520, 38535168, 253755392, 277348352, 268435456, 2621440000, 5670699008, 6115295232, 3758096384, 28219277312, 60397977600
Offset: 1

Views

Author

Jean-François Alcover, Jul 07 2015

Keywords

Examples

			1/1, 8/3, 18/5, 128/35, 200/63, 192/77, 784/429, ... = A259852/A259853.
		

Crossrefs

Cf. A014307, A180875, A259853 (denominators).

Programs

  • Mathematica
    Table[2^n*n^2/Binomial[2*n, n] // Numerator, {n, 1, 40}]
  • PARI
    vector(40, n, numerator(n^2*2^n/binomial(2*n,n))) \\ Michel Marcus, Jul 07 2015

Formula

a(n) = numerator(n^2*2^n/C(2*n,n)).
S_2(2) = Sum_{n>=1} 2^n*n^2/binomial(2*n, n) = 3F2([2,2,2]; [1,3/2]; 1/2) = 11 + 7*Pi/2. [Corrected by Petros Hadjicostas, May 14 2020]

A259853 Denominators of the terms of Lehmer's series S_2(2), where S_k(x) = Sum_{n>=1} n^k*x^n/binomial(2*n, n).

Original entry on oeis.org

1, 3, 5, 35, 63, 77, 429, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 215441, 300540195, 583401555, 756261275, 4418157975, 6892326441, 22427411435, 263012370465, 514589420475, 895766768975, 15801325804719, 61989816618513, 121683714103007
Offset: 1

Views

Author

Jean-François Alcover, Jul 07 2015

Keywords

Comments

The first 14 terms are identical to A052468.

Examples

			1/1, 8/3, 18/5, 128/35, 200/63, 192/77, 784/429, ... = A259852/A259853.
		

Crossrefs

Cf. A014307, A052468, A180875, A259852 (numerators).

Programs

  • Mathematica
    Table[2^n*n^2/Binomial[2*n, n] // Denominator, {n, 1, 40}]
  • PARI
    vector(40, n, denominator(n^2*2^n/binomial(2*n,n))) \\ Michel Marcus, Jul 07 2015

Formula

a(n) = denominator(n^2*2^n/C(2*n,n)).

A184962 Triangle T(n,k), read by rows, given by (0, 1, 2, 2, 4, 3, 6, 4, 8, 5, 10, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 3, 1, 0, 13, 15, 6, 1, 0, 75, 95, 45, 10, 1, 0, 541, 735, 390, 105, 15, 1, 0, 4683, 6727, 3885, 1190, 210, 21, 1, 0, 47293, 71127, 43918, 14805, 3010, 378, 28, 1, 0, 545835
Offset: 0

Views

Author

Philippe Deléham, Dec 22 2011

Keywords

Comments

The Bell transform of the Fubini numbers. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016

Examples

			Triangle begins :
1
0, 1
0, 1, 1
0, 3, 3, 1
0, 13, 15, 6, 1
0, 75, 95, 45, 10, 1
		

Crossrefs

Row sums are A014307(n).

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> (polylog(-n,1/2)+0^n)/2, 10); # Peter Luschny, Jan 29 2016
  • Mathematica
    (* The function BellMatrix is defined in A264428. *)
    bm = BellMatrix[(PolyLog[-#, 1/2] + Boole[n == 0])/2 &, 10]; Table[bm[[n, k]], {n, 1, Length[bm]}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 31 2016, after Peter Luschny *)

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A014307(n), A000629(n) for x = 0, 1, 2 respectively.

A280939 Expansion of e.g.f.: 2*sinh(x/2) / sqrt(2 - exp(x)).

Original entry on oeis.org

1, 1, 4, 19, 121, 946, 8779, 94249, 1148746, 15667741, 236396029, 3909054304, 70297156021, 1365847397461, 28512838809004, 636437585232559, 15125744356058821, 381337518656892106, 10164860714961807079, 285635253778131491389, 8438962752941736017146, 261512261403795336646801, 8481542634943973943517129, 287325556922319462615912544, 10148442521179099638781764121
Offset: 1

Views

Author

Paul D. Hanna, Jan 11 2017

Keywords

Examples

			E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 19*x^4/4! + 121*x^5/5! + 946*x^6/6! + 8779*x^7/7! + 94249*x^8/8! + 1148746*x^9/9! + 15667741*x^10/10! + 236396029*x^11/11! + 3909054304*x^12/12! + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(2*Sinh(x/2)/Sqrt(2 - Exp(x)))); [Factorial(n)*b[n]: n in [1..m-1]]; // G. C. Greubel, Oct 10 2018
  • Maple
    seq(coeff(series(factorial(n)*(2*sinh(x/2)/sqrt(2-exp(x))),x,n+1), x, n), n = 1 .. 25); # Muniru A Asiru, Oct 11 2018
  • Mathematica
    Rest[With[{nmax = 50}, CoefficientList[Series[2*Sinh[x/2]/Sqrt[2 - Exp[x]], {x, 0, nmax}], x]*Range[0, nmax]!]] (* G. C. Greubel, Oct 10 2018 *)
  • PARI
    {a(n) = my(X=x+x*O(x^n)); n!*polcoeff( 2*sinh(X/2) / sqrt(2 - exp(X)),n)}
    for(n=1,20,print1(a(n),", "))
    

Formula

a(n) ~ n^n / (sqrt(2) * log(2)^(n + 1/2) * exp(n)). - Vaclav Kotesovec, Jan 11 2017

A296545 Expansion of e.g.f. arcsinh(exp(x)-1).

Original entry on oeis.org

0, 1, 1, 0, -5, -15, 46, 735, 2185, -33390, -453479, -364155, 57806200, 681966285, -3289884779, -197798065920, -1815938249585, 33917006295885, 1155429901407646, 5691720408045315, -408736165211351795, -10271257189100959590, 23948813753053818421, 6626731340918542069425, 124356774945741129842320
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 15 2017

Keywords

Examples

			arcsinh(exp(x)-1) = x/1! + x^2/2! - 5*x^4/4! - 15*x^5/5! + 46*x^6/6! + 735*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    S:= series(arcsinh(exp(x)-1),x,41):
    seq(coeff(S,x,j)*j!,j=0..40); # Robert Israel, Dec 17 2017
  • Mathematica
    nmax = 24; CoefficientList[Series[ArcSinh[Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 24; CoefficientList[Series[-Log[1 - Exp[x] + Sqrt[1 + (1 - Exp[x])^2]], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: -log(1 - exp(x) + sqrt(1 + (1 - exp(x))^2)).

A155520 Triangle read by rows: A(n,k) is the number of ordered trees with n edges having k drawings. A drawing of an ordered tree T with n edges is a sequence of trees (T_0, T_1, T_2, ..., T_n), such that T_n = T and T_{i-1} arises from T_i by deleting a leaf of T_i.

Original entry on oeis.org

1, 2, 3, 2, 4, 2, 6, 1, 1, 5, 2, 6, 9, 1, 4, 4, 4, 2, 1, 2, 2
Offset: 1

Views

Author

Emeric Deutsch, Mar 19 2009

Keywords

Comments

Row sums are the Catalan numbers (A000108).
Sum(k*A(n,k), k>0)=A014307(n).

Examples

			We represent ordered trees by their corresponding Dyck paths via the "glove" bijection.
The "tree" UDUUDD has 2 drawings:
* , UD, UUDD, UDUUDD and *, UD, UDUD, UDUUDD;
the "tree" UUDDUD has 2 drawings:
*, UD, UUDD, UUDDUD and *, UD, UUDD, UUDDUD.
Thus A(3,2)=2.
The "tree" UUUDDD has 1 drawing: *, UD, UUDD, UUUDDD;
the "tree" UUDUDD has 1 drawing: *, UD, UUDD, UUDUDD;
the "tree" UDUDUD has 1 drawing: *, UD, UDUD, UDUDUD.
Thus A(3,1)=3.
Triangle starts:
1;
2;
3, 2;
4, 2, 6, 1, 1;
5, 2, 6, 9, 1, 4, 4, 4, 2, 1, 2, 2;
		

Extensions

Keyword tabf added by Michel Marcus, Apr 09 2013
Previous Showing 21-26 of 26 results.