A259852
Numerators of the terms of Lehmer's series S_2(2), where S_k(x) = Sum_{n>=1} n^k*x^n/binomial(2*n, n).
Original entry on oeis.org
1, 8, 18, 128, 200, 192, 784, 8192, 10368, 25600, 30976, 147456, 173056, 401408, 10240, 8388608, 9469952, 7077888, 23658496, 20971520, 38535168, 253755392, 277348352, 268435456, 2621440000, 5670699008, 6115295232, 3758096384, 28219277312, 60397977600
Offset: 1
1/1, 8/3, 18/5, 128/35, 200/63, 192/77, 784/429, ... = A259852/A259853.
- F. J. Dyson, N. E. Frankel, and M. L. Glasser, Lehmer's Interesting Series, arXiv:1009.4274 [math-ph], 2010-2011.
- F. J. Dyson, N. E. Frankel, and M. L. Glasser, Lehmer's interesting series, Amer. Math. Monthly, 120 (2013), 116-130.
- D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92(7) (1985), 449-457.
-
Table[2^n*n^2/Binomial[2*n, n] // Numerator, {n, 1, 40}]
-
vector(40, n, numerator(n^2*2^n/binomial(2*n,n))) \\ Michel Marcus, Jul 07 2015
A259853
Denominators of the terms of Lehmer's series S_2(2), where S_k(x) = Sum_{n>=1} n^k*x^n/binomial(2*n, n).
Original entry on oeis.org
1, 3, 5, 35, 63, 77, 429, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 215441, 300540195, 583401555, 756261275, 4418157975, 6892326441, 22427411435, 263012370465, 514589420475, 895766768975, 15801325804719, 61989816618513, 121683714103007
Offset: 1
1/1, 8/3, 18/5, 128/35, 200/63, 192/77, 784/429, ... = A259852/A259853.
- F. J. Dyson, N. E. Frankel, M. L. Glasser, Lehmer's Interesting Series, arXiv:1009.4274 [math-ph], 2010-2011.
- F. J. Dyson, N. E. Frankel, and M. L. Glasser, Lehmer's interesting series, Amer. Math. Monthly, 120 (2013), 116-130.
- D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92(7) (1985), 449-457.
-
Table[2^n*n^2/Binomial[2*n, n] // Denominator, {n, 1, 40}]
-
vector(40, n, denominator(n^2*2^n/binomial(2*n,n))) \\ Michel Marcus, Jul 07 2015
A184962
Triangle T(n,k), read by rows, given by (0, 1, 2, 2, 4, 3, 6, 4, 8, 5, 10, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 3, 3, 1, 0, 13, 15, 6, 1, 0, 75, 95, 45, 10, 1, 0, 541, 735, 390, 105, 15, 1, 0, 4683, 6727, 3885, 1190, 210, 21, 1, 0, 47293, 71127, 43918, 14805, 3010, 378, 28, 1, 0, 545835
Offset: 0
Triangle begins :
1
0, 1
0, 1, 1
0, 3, 3, 1
0, 13, 15, 6, 1
0, 75, 95, 45, 10, 1
-
# The function BellMatrix is defined in A264428.
BellMatrix(n -> (polylog(-n,1/2)+0^n)/2, 10); # Peter Luschny, Jan 29 2016
-
(* The function BellMatrix is defined in A264428. *)
bm = BellMatrix[(PolyLog[-#, 1/2] + Boole[n == 0])/2 &, 10]; Table[bm[[n, k]], {n, 1, Length[bm]}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 31 2016, after Peter Luschny *)
A280939
Expansion of e.g.f.: 2*sinh(x/2) / sqrt(2 - exp(x)).
Original entry on oeis.org
1, 1, 4, 19, 121, 946, 8779, 94249, 1148746, 15667741, 236396029, 3909054304, 70297156021, 1365847397461, 28512838809004, 636437585232559, 15125744356058821, 381337518656892106, 10164860714961807079, 285635253778131491389, 8438962752941736017146, 261512261403795336646801, 8481542634943973943517129, 287325556922319462615912544, 10148442521179099638781764121
Offset: 1
E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 19*x^4/4! + 121*x^5/5! + 946*x^6/6! + 8779*x^7/7! + 94249*x^8/8! + 1148746*x^9/9! + 15667741*x^10/10! + 236396029*x^11/11! + 3909054304*x^12/12! + ...
-
m:=50; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(2*Sinh(x/2)/Sqrt(2 - Exp(x)))); [Factorial(n)*b[n]: n in [1..m-1]]; // G. C. Greubel, Oct 10 2018
-
seq(coeff(series(factorial(n)*(2*sinh(x/2)/sqrt(2-exp(x))),x,n+1), x, n), n = 1 .. 25); # Muniru A Asiru, Oct 11 2018
-
Rest[With[{nmax = 50}, CoefficientList[Series[2*Sinh[x/2]/Sqrt[2 - Exp[x]], {x, 0, nmax}], x]*Range[0, nmax]!]] (* G. C. Greubel, Oct 10 2018 *)
-
{a(n) = my(X=x+x*O(x^n)); n!*polcoeff( 2*sinh(X/2) / sqrt(2 - exp(X)),n)}
for(n=1,20,print1(a(n),", "))
A296545
Expansion of e.g.f. arcsinh(exp(x)-1).
Original entry on oeis.org
0, 1, 1, 0, -5, -15, 46, 735, 2185, -33390, -453479, -364155, 57806200, 681966285, -3289884779, -197798065920, -1815938249585, 33917006295885, 1155429901407646, 5691720408045315, -408736165211351795, -10271257189100959590, 23948813753053818421, 6626731340918542069425, 124356774945741129842320
Offset: 0
arcsinh(exp(x)-1) = x/1! + x^2/2! - 5*x^4/4! - 15*x^5/5! + 46*x^6/6! + 735*x^7/7! + ...
-
S:= series(arcsinh(exp(x)-1),x,41):
seq(coeff(S,x,j)*j!,j=0..40); # Robert Israel, Dec 17 2017
-
nmax = 24; CoefficientList[Series[ArcSinh[Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 24; CoefficientList[Series[-Log[1 - Exp[x] + Sqrt[1 + (1 - Exp[x])^2]], {x, 0, nmax}], x] Range[0, nmax]!
A155520
Triangle read by rows: A(n,k) is the number of ordered trees with n edges having k drawings. A drawing of an ordered tree T with n edges is a sequence of trees (T_0, T_1, T_2, ..., T_n), such that T_n = T and T_{i-1} arises from T_i by deleting a leaf of T_i.
Original entry on oeis.org
1, 2, 3, 2, 4, 2, 6, 1, 1, 5, 2, 6, 9, 1, 4, 4, 4, 2, 1, 2, 2
Offset: 1
We represent ordered trees by their corresponding Dyck paths via the "glove" bijection.
The "tree" UDUUDD has 2 drawings:
* , UD, UUDD, UDUUDD and *, UD, UDUD, UDUUDD;
the "tree" UUDDUD has 2 drawings:
*, UD, UUDD, UUDDUD and *, UD, UUDD, UUDDUD.
Thus A(3,2)=2.
The "tree" UUUDDD has 1 drawing: *, UD, UUDD, UUUDDD;
the "tree" UUDUDD has 1 drawing: *, UD, UUDD, UUDUDD;
the "tree" UDUDUD has 1 drawing: *, UD, UDUD, UDUDUD.
Thus A(3,1)=3.
Triangle starts:
1;
2;
3, 2;
4, 2, 6, 1, 1;
5, 2, 6, 9, 1, 4, 4, 4, 2, 1, 2, 2;
Comments