cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 84 results. Next

A327806 Triangle read by rows where T(n,k) is the number of antichains of sets with n vertices and vertex-connectivity >= k.

Original entry on oeis.org

1, 2, 0, 5, 1, 0, 19, 5, 2, 0, 167, 84, 44, 17, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2019

Keywords

Comments

An antichain is a set of nonempty sets, none of which is a subset of any other.
The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.

Examples

			Triangle begins:
    1
    2   0
    5   1   0
   19   5   2   0
  167  84  44  17   0
		

Crossrefs

Except for the first column, same as the covering case A327350.
Column k = 0 is A014466 (antichains).
Column k = 1 is A048143 (clutters), if we assume A048143(0) = A048143(1) = 0.
Column k = 2 is A275307 (blobs), if we assume A275307(1) = A275307(2) = 0.
The unlabeled version is A327807.
The case for vertex connectivity exactly k is A327351.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],vertConnSys[Range[n],#]>=k&]],{n,0,4},{k,0,n}]

A326874 BII-numbers of abstract simplicial complexes.

Original entry on oeis.org

0, 1, 2, 3, 7, 8, 9, 10, 11, 15, 25, 27, 31, 42, 43, 47, 59, 63, 127, 128, 129, 130, 131, 135, 136, 137, 138, 139, 143, 153, 155, 159, 170, 171, 175, 187, 191, 255, 385, 387, 391, 393, 395, 399, 409, 411, 415, 427, 431, 443, 447, 511, 642, 643, 647, 650, 651, 655
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

An abstract simplicial complex is a set of finite nonempty sets (edges) that is closed under taking a nonempty subset of any edge.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The enumeration of abstract simplicial complexes by number of covered vertices is given by A307249.

Examples

			The sequence of all abstract simplicial complexes together with their BII-numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    3: {{1},{2}}
    7: {{1},{2},{1,2}}
    8: {{3}}
    9: {{1},{3}}
   10: {{2},{3}}
   11: {{1},{2},{3}}
   15: {{1},{2},{1,2},{3}}
   25: {{1},{3},{1,3}}
   27: {{1},{2},{3},{1,3}}
   31: {{1},{2},{3},{1,2},{1,3}}
   42: {{2},{3},{2,3}}
   43: {{1},{2},{3},{2,3}}
   47: {{1},{2},{3},{1,2},{2,3}}
   59: {{1},{2},{3},{1,3},{2,3}}
   63: {{1},{2},{3},{1,2},{1,3},{2,3}}
  127: {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
  128: {{4}}
  129: {{1},{4}}
		

Crossrefs

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],SubsetQ[bpe/@bpe[#],DeleteCases[Union@@Subsets/@bpe/@bpe[#],{}]]&]

A327424 Number of unlabeled, non-connected or empty antichains of nonempty subsets of {1..n}.

Original entry on oeis.org

1, 1, 2, 4, 10, 33, 234, 16579
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2019

Keywords

Comments

An antichain is a set of nonempty sets, none of which is a subset of any other. A singleton is considered to be connected.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(4) = 10 antichains:
  {}  {}  {}         {}             {}
          {{1},{2}}  {{1},{2}}      {{1},{2}}
                     {{1},{2,3}}    {{1},{2,3}}
                     {{1},{2},{3}}  {{1},{2},{3}}
                                    {{1},{2,3,4}}
                                    {{1,2},{3,4}}
                                    {{1},{2},{3,4}}
                                    {{1},{2},{3},{4}}
                                    {{1},{2,4},{3,4}}
                                    {{1},{2,3},{2,4},{3,4}}
		

Crossrefs

Partial sums of the positive-index terms of A327426.
The covering case is A327426.
The labeled version is A327354.
The labeled covering case is A120338.
Unlabeled antichains that are either not connected or not covering are A327437.
The case without empty antichains is A327808.

A327425 Number of unlabeled antichains of nonempty sets covering n vertices where every two vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 1, 1, 2, 6, 54
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 6 antichains:
    {1}  {12}  {123}         {1234}
               {12}{13}{23}  {12}{134}{234}
                             {124}{134}{234}
                             {12}{13}{14}{234}
                             {123}{124}{134}{234}
                             {12}{13}{14}{23}{24}{34}
		

Crossrefs

The labeled version is A327020.
Unlabeled covering antichains are A261005.
The weighted version is A327060.

A327436 Number of connected, unlabeled antichains of nonempty subsets of {1..n} covering n vertices with at least one cut-vertex (vertex-connectivity 1).

Original entry on oeis.org

0, 0, 1, 1, 4, 29
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 29 antichains:
  {12}  {12}{13}  {12}{134}         {12}{1345}
                  {12}{13}{14}      {123}{145}
                  {12}{13}{24}      {12}{13}{145}
                  {12}{13}{14}{23}  {12}{13}{245}
                                    {13}{24}{125}
                                    {13}{124}{125}
                                    {14}{123}{235}
                                    {12}{13}{14}{15}
                                    {12}{13}{14}{25}
                                    {12}{13}{24}{35}
                                    {12}{13}{14}{235}
                                    {12}{13}{23}{145}
                                    {12}{13}{45}{234}
                                    {12}{14}{23}{135}
                                    {12}{15}{134}{234}
                                    {15}{23}{124}{134}
                                    {15}{123}{124}{134}
                                    {15}{123}{124}{234}
                                    {12}{13}{14}{15}{23}
                                    {12}{13}{14}{23}{25}
                                    {12}{13}{14}{23}{45}
                                    {12}{13}{15}{24}{34}
                                    {12}{13}{14}{15}{234}
                                    {12}{13}{14}{25}{234}
                                    {12}{13}{14}{15}{23}{24}
                                    {12}{13}{14}{15}{23}{45}
                                    {12}{13}{14}{23}{24}{35}
                                    {15}{123}{124}{134}{234}
                                    {12}{13}{14}{15}{23}{24}{34}
		

Crossrefs

Formula

a(n > 2) = A261006(n) - A305028(n).

A327438 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled antichains of nonempty subsets of {1..n} with spanning edge-connectivity k.

Original entry on oeis.org

1, 1, 1, 3, 1, 6, 2, 1, 15, 7, 5, 2, 52, 53, 62, 31, 9, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.

Examples

			Triangle begins:
   1
   1  1
   3  1
   6  2  1
  15  7  5  2
  52 53 62 31  9  1  1
The antichains counted in row n = 4 are the following:
  0             {1234}         {12}{134}{234}     {123}{124}{134}{234}
  {1}           {12}{134}      {123}{124}{134}    {12}{13}{14}{23}{24}{34}
  {12}          {123}{124}     {12}{13}{24}{34}
  {123}         {12}{13}{14}   {12}{13}{14}{234}
  {1}{2}        {12}{13}{24}   {12}{13}{14}{23}{24}
  {1}{23}       {12}{13}{234}
  {12}{13}      {12}{13}{14}{23}
  {1}{234}
  {12}{34}
  {1}{2}{3}
  {1}{2}{34}
  {2}{13}{14}
  {12}{13}{23}
  {1}{2}{3}{4}
  {4}{12}{13}{23}
		

Crossrefs

Row sums are A306505.
Column k = 0 is A327437.
The labeled version is A327352.

A327808 Number of unlabeled, disconnected, nonempty antichains of subsets of {1..n}.

Original entry on oeis.org

0, 0, 1, 3, 9, 32, 233, 16578
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2019

Keywords

Comments

An antichain is a set of nonempty sets, none of which is a subset of any other. A singleton is considered to be connected.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(4) = 9 antichains:
   {{1},{2}}  {{1},{2}}      {{1},{2}}
              {{1},{2,3}}    {{1},{2,3}}
              {{1},{2},{3}}  {{1},{2},{3}}
                             {{1},{2,3,4}}
                             {{1,2},{3,4}}
                             {{1},{2},{3,4}}
                             {{1},{2},{3},{4}}
                             {{2},{1,3},{1,4}}
                             {{4},{1,2},{1,3},{2,3}}
		

Crossrefs

The labeled version is A327354 - 1.
The covering case is A327426.
Unlabeled antichains that are either not connected or not covering are A327437.
The version with empty antichains allowed is A327424.

Formula

a(n) = A327424(n) - 1.

A344084 Concatenated list of all finite nonempty sets of positive integers sorted first by maximum, then by length, and finally lexicographically.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 3, 4, 1, 4, 2, 4, 3, 4, 1, 2, 4, 1, 3, 4, 2, 3, 4, 1, 2, 3, 4, 5, 1, 5, 2, 5, 3, 5, 4, 5, 1, 2, 5, 1, 3, 5, 1, 4, 5, 2, 3, 5, 2, 4, 5, 3, 4, 5, 1, 2, 3, 5, 1, 2, 4, 5, 1, 3, 4, 5, 2, 3, 4, 5, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Gus Wiseman, May 11 2021

Keywords

Examples

			The sets are the columns below:
  1 2 1 3 1 2 1 4 1 2 3 1 1 2 1 5 1 2 3 4 1 1 1 2 2 3 1
      2   3 3 2   4 4 4 2 3 3 2   5 5 5 5 2 3 4 3 4 4 2
              3         4 4 4 3           5 5 5 5 5 5 3
                              4                       5
As a tetrangle, the first four triangles are:
  {1}
  {2},{1,2}
  {3},{1,3},{2,3},{1,2,3}
  {4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}
		

Crossrefs

Triangle lengths are A000079.
Triangle sums are A001793.
Positions of first appearances are A005183.
Set maxima are A070939.
Set lengths are A124736.

Programs

  • Mathematica
    SortBy[Rest[Subsets[Range[5]]],Last]

A379707 Number of nonempty labeled antichains of subsets of [n] such that all subsets except possibly those of the largest size are disjoint.

Original entry on oeis.org

1, 2, 5, 19, 133, 2605, 1128365, 68731541392, 1180735736455875189405, 170141183460507927984536600089529165335, 7237005577335553223087828975127304180898559033209149835788539833222132944557
Offset: 0

Views

Author

John Tyler Rascoe, Dec 30 2024

Keywords

Examples

			For n < 4 all nonempty labeled antichains are counted. When n=6 antichains such as {{1,2,6},{1,4},{1,5}} are not counted, while {{1,2,4},{1,2,6},{3},{5}} is counted.
		

Crossrefs

Programs

  • Python
    from math import comb
    def rS2(n,k,m):
        if n < 1 and k < 1: return 1
        elif n < 1 or k < 1: return 0
        else: return k*rS2(n-1,k,m) + rS2(n-1,k-1,m)- comb(n-1,m)*rS2(n-1-m,k-1,m)
    def A229223(n,k):
        return sum(rS2(n,x,k) for x in range(n+1))
    def A379707(n):
        return 1+sum(sum(comb(n,i)*(2**comb(n-i,s)-1)*A229223(i,s-1) for i in range(n-s+1)) for s in range(1,n+1))

Formula

a(n) = 1 + Sum_{s=1..n} (Sum_{i=0..n-s} binomial(n,i) * (2^binomial(n-i,s) - 1) * A229223(i,s-1)).

A379712 Triangle read by rows: T(n,k) is the number of nonempty labeled antichains of subsets of [n] such that the largest subset is of size k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 10, 1, 1, 15, 97, 53, 1, 1, 31, 1418, 5443, 686, 1, 1, 63, 40005, 3701128, 4043864, 43291, 1
Offset: 0

Views

Author

John Tyler Rascoe, Dec 30 2024

Keywords

Examples

			Triangle begins:
   k=0   1     2     3    4  5
 n=0 1;
 n=1 1,  1;
 n=2 1,  3,    1;
 n=3 1,  7,   10,    1;
 n=4 1, 15,   97,   53,   1;
 n=5 1, 31, 1418, 5443, 686, 1;
 ...
T(3,0) =  1: {{}}.
T(3,1) =  7: {{1}}, {{2}}, {{3}}, {{1},{2}}, {{1},{3}}, {{2},{3}}, {{1},{2},{3}}.
T(3,2) = 10: {{1,2}}, {{1,3}}, {{2,3}}, {{1},{23}}, {{2},{13}}, {{3},{12}}, {{12},{13}}, {{12},{23}}, {{13},{23}}, {{12},{13},{23}}.
T(3,3) =  1: {{1,2,3}}.
		

Crossrefs

Cf. (column k=1) A000225, A000372, (row sums) A014466, A327806, (column k=2) A379706.

Programs

  • Python
    # see links
Previous Showing 71-80 of 84 results. Next