A167581
The second left hand column of triangle A167580.
Original entry on oeis.org
-1, 0, 28, 192, 880, 3328, 11200, 34816, 102144, 286720, 777216, 2048000, 5271552, 13303808, 33013760, 80740352, 194969600, 465567744, 1100742656, 2579496960, 5996806144, 13841203200, 31738298368, 72343355392, 163997286400
Offset: 2
Equals the second left hand column of triangle
A167580.
-
LinearRecurrence[{8,-24,32,-16},{-1,0,28,192},30] (* Harvey P. Dale, Jan 22 2012 *)
A167582
The third left hand column of triangle A167580.
Original entry on oeis.org
3, 98, 1080, 7568, 40976, 187488, 761600, 2830848, 9821952, 32254464, 101263360, 306229248, 897175552, 2558058496, 7123894272, 19434569728, 52063567872, 137236709376, 356550967296, 914355126272, 2317328842752
Offset: 3
Equals the third left hand column of triangle
A167580.
-
LinearRecurrence[{12, -60, 160, -240, 192, -64}, {3, 98, 1080, 7568, 40976, 187488}, 100] (* G. C. Greubel, Jun 16 2016 *)
A168305
The fourth left hand column of triangle A167580.
Original entry on oeis.org
-15, -48, 2024, 31616, 274480, 1784320, 9645312, 45735936, 196441344, 780595200, 2912532480, 10315202560, 34963222528, 114140905472, 360716042240, 1108051230720, 3319564664832, 9726122262528, 27935264735232, 78810426900480, 218761889054720, 598349308755968
Offset: 4
- G. C. Greubel, Table of n, a(n) for n = 4..1000
- Index entries for linear recurrences with constant coefficients, signature (16, -112, 448, -1120, 1792, -1792, 1024, -256).
Equals the fourth left hand column of triangle
A167580.
-
[2^n*(54*n^7-763*n^6+4158*n^5-11305*n^4+16401*n^3- 12502*n^2+4587*n-630)/10080: n in [4..40]]; // Vincenzo Librandi, Jul 18 2016
-
LinearRecurrence[{16, -112, 448, -1120, 1792, -1792, 1024, -256}, {-15, -48, 2024, 31616, 274480, 1784320, 9645312, 45735936}, 997] (* G. C. Greubel, Jul 17 2016 *)
A168306
The fifth left hand column of triangle A167580.
Original entry on oeis.org
105, 6534, 132444, 1593960, 13962848, 98382912, 590814336, 3137815296, 15114950400, 67240622592, 279977837568, 1102376491008, 4137416245248, 14896905748480, 51722619518976, 173913487048704, 568323403481088, 1810359422681088, 5635647921192960
Offset: 5
- G. C. Greubel, Table of n, a(n) for n = 5..1000
- Index entries for linear recurrences with constant coefficients, signature (20, -180, 960, -3360, 8064, -13440, 15360, -11520, 5120, -1024).
Equals the fifth left hand column of triangle
A167580.
-
[2^n*(214*n^9-3963*n^8+30768*n^7-130536*n^6+ 330834*n^5-514332*n^4+484382*n^3-262149*n^2+72342*n- 7560)/241920: n in [5..40]]; // Vincenzo Librandi, Jul 18 2016
-
LinearRecurrence[{20,-180,960,-3360,8064,-13440,15360,-11520,5120,-1024},{105, 6534, 132444, 1593960, 13962848, 98382912, 590814336, 3137815296, 15114950400, 67240622592},50] (* G. C. Greubel, Jul 17 2016 *)
A171220
a(n) = (2n + 1)*5^n.
Original entry on oeis.org
1, 15, 125, 875, 5625, 34375, 203125, 1171875, 6640625, 37109375, 205078125, 1123046875, 6103515625, 32958984375, 177001953125, 946044921875, 5035400390625, 26702880859375, 141143798828125, 743865966796875, 3910064697265625, 20503997802734375, 107288360595703125
Offset: 0
A199299
a(n) = (2*n + 1)*6^n.
Original entry on oeis.org
1, 18, 180, 1512, 11664, 85536, 606528, 4199040, 28553472, 191476224, 1269789696, 8344332288, 54419558400, 352638738432, 2272560758784, 14575734521856, 93096626946048, 592433080565760, 3757718396731392, 23765029860409344, 149902496042582016, 943288877536247808
Offset: 0
A073774
Number of plane binary trees of size n+3 and height n.
Original entry on oeis.org
0, 0, 0, 4, 68, 376, 1440, 4736, 14272, 40576, 110592, 291840, 750592, 1890304, 4677632, 11403264, 27443200, 65306624, 153878528, 359399424, 832831488, 1916272640, 4380950528, 9957277696, 22510829568, 50642026496, 113413980160
Offset: 0
A199300
a(n) = (2*n + 1)*7^n.
Original entry on oeis.org
1, 21, 245, 2401, 21609, 184877, 1529437, 12353145, 98001617, 766718533, 5931980229, 45478515089, 346032180025, 2616003280989, 19668469112621, 147174406808233, 1096686708796833, 8142067989552245, 60251303122686613, 444556912229552577, 3271482918202092041
Offset: 0
-
[(2*n+1)*7^n: n in [0..30]]; // Vincenzo Librandi, Nov 05 2011
-
a[n_] := (2*n + 1)*7^n; Array[a, 25, 0] (* Amiram Eldar, Dec 10 2022 *)
LinearRecurrence[{14,-49},{1,21},30] (* Harvey P. Dale, Mar 26 2025 *)
-
a(n) = (2*n+1)*7^n \\ Amiram Eldar, Dec 10 2022
A199301
a(n) = (2n+1)*8^n.
Original entry on oeis.org
1, 24, 320, 3584, 36864, 360448, 3407872, 31457280, 285212672, 2550136832, 22548578304, 197568495616, 1717986918400, 14843406974976, 127543348822016, 1090715534753792, 9288674231451648, 78812993478983680, 666532744850833408, 5620492334958379008, 47269781688880726016
Offset: 0
A073773
Number of plane binary trees of size n+2 and height n.
Original entry on oeis.org
0, 0, 0, 6, 40, 152, 480, 1376, 3712, 9600, 24064, 58880, 141312, 333824, 778240, 1794048, 4096000, 9273344, 20840448, 46530560, 103284736, 228065280, 501219328, 1096810496, 2390753280, 5192548352, 11240734720, 24259854336
Offset: 0
a(3) = 6 because there exists only these six binary trees of size 5 and height 3:
_\/\/_______\/\/_\/_\/_____\/_\/_\/___\/___V_V___
__\/_\/___\/_\/___\/_\/___\/_\/___\/_\/___\/_\/__
___\./_____\./_____\./_____\./_____\./_____\./___
Comments