cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A167581 The second left hand column of triangle A167580.

Original entry on oeis.org

-1, 0, 28, 192, 880, 3328, 11200, 34816, 102144, 286720, 777216, 2048000, 5271552, 13303808, 33013760, 80740352, 194969600, 465567744, 1100742656, 2579496960, 5996806144, 13841203200, 31738298368, 72343355392, 163997286400
Offset: 2

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Crossrefs

Equals the second left hand column of triangle A167580.
Other left hand columns are A014480 A167582, A168305 and A168306.

Programs

  • Mathematica
    LinearRecurrence[{8,-24,32,-16},{-1,0,28,192},30] (* Harvey P. Dale, Jan 22 2012 *)

Formula

a(n) = 2^n*(2*n^3 - 9*n^2 + 10*n - 3)/12.
GF(z) = (4*z^2 + 8*z - 1)/(1-2*z)^4.
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4)
a(n) - 7*a(n-1) + 18*a(n-2) - 20*a(n-3) + 8*a(n-4) = 1*2^(n-1)

Extensions

Formulae and links added by Johannes W. Meijer, Nov 23 2009

A167582 The third left hand column of triangle A167580.

Original entry on oeis.org

3, 98, 1080, 7568, 40976, 187488, 761600, 2830848, 9821952, 32254464, 101263360, 306229248, 897175552, 2558058496, 7123894272, 19434569728, 52063567872, 137236709376, 356550967296, 914355126272, 2317328842752
Offset: 3

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Crossrefs

Equals the third left hand column of triangle A167580.
Other left hand columns are A014480, A167581, A168305 and A168306.

Programs

  • Mathematica
    LinearRecurrence[{12, -60, 160, -240, 192, -64}, {3, 98, 1080, 7568, 40976, 187488}, 100] (* G. C. Greubel, Jun 16 2016 *)

Formula

a(n) = 2^n*(14*n^5 - 95*n^4 + 240*n^3 - 280*n^2 + 151*n - 30)/240.
GF(z) = (8*z^3 + 84*z^2 + 62*z + 3)/(1-2*z)^6.
a(n) = 12*a(n-1) - 60*a(n-2) + 160*a(n-3) - 240*a(n-4) + 192*a(n-5) - 64*a(n-6).
a(n)-11*a(n-1)+50*a(n-2)-120*a(n-3)+160*a(n-4)-112*a(n-5)+32*a(n-6) = 7*2^(n-1).

Extensions

Formulae and links added by Johannes W. Meijer, Nov 23 2009

A168305 The fourth left hand column of triangle A167580.

Original entry on oeis.org

-15, -48, 2024, 31616, 274480, 1784320, 9645312, 45735936, 196441344, 780595200, 2912532480, 10315202560, 34963222528, 114140905472, 360716042240, 1108051230720, 3319564664832, 9726122262528, 27935264735232, 78810426900480, 218761889054720, 598349308755968
Offset: 4

Views

Author

Johannes W. Meijer, Nov 23 2009

Keywords

Crossrefs

Equals the fourth left hand column of triangle A167580.
Other left hand columns are A014480, A167581, A167582 and A168306.

Programs

  • Magma
    [2^n*(54*n^7-763*n^6+4158*n^5-11305*n^4+16401*n^3- 12502*n^2+4587*n-630)/10080: n in [4..40]]; // Vincenzo Librandi, Jul 18 2016
  • Mathematica
    LinearRecurrence[{16, -112, 448, -1120, 1792, -1792, 1024, -256}, {-15, -48, 2024, 31616, 274480, 1784320, 9645312, 45735936}, 997] (* G. C. Greubel, Jul 17 2016 *)

Formula

a(n) = 2^n*(54*n^7 - 763*n^6 + 4158*n^5 - 11305*n^4 + 16401*n^3 - 12502*n^2 + 4587*n - 630)/10080.
G.f.: (16*z^4 + 576*z^3 + 1112*z^2 + 192*z - 15)/(2*z-1)^8.
a(n) = 16*a(n-1) - 112*a(n-2) + 448*a(n-3) - 1120*a(n-4) + 1792*a(n-5) - 1792*a(n-6) + 1024*a(n-7) - 256*a(n-8).
a(n) - 15*a(n-1) + 98*a(n-2) - 364*a(n-3) + 840*a(n-4) - 1232*a(n-5) + 1120*a(n-6) - 576*a(n-7) + 128*a(n-8) = 27*2^(n-1).

A168306 The fifth left hand column of triangle A167580.

Original entry on oeis.org

105, 6534, 132444, 1593960, 13962848, 98382912, 590814336, 3137815296, 15114950400, 67240622592, 279977837568, 1102376491008, 4137416245248, 14896905748480, 51722619518976, 173913487048704, 568323403481088, 1810359422681088, 5635647921192960
Offset: 5

Views

Author

Johannes W. Meijer, Nov 23 2009

Keywords

Crossrefs

Equals the fifth left hand column of triangle A167580.
Other left hand columns are A014480, A167581, A167582 and A168305.

Programs

  • Magma
    [2^n*(214*n^9-3963*n^8+30768*n^7-130536*n^6+ 330834*n^5-514332*n^4+484382*n^3-262149*n^2+72342*n- 7560)/241920: n in [5..40]]; // Vincenzo Librandi, Jul 18 2016
  • Mathematica
    LinearRecurrence[{20,-180,960,-3360,8064,-13440,15360,-11520,5120,-1024},{105, 6534, 132444, 1593960, 13962848, 98382912, 590814336, 3137815296, 15114950400, 67240622592},50] (* G. C. Greubel, Jul 17 2016 *)

Formula

a(n) = 2^n*(214*n^9 - 3963*n^8 + 30768*n^7 - 130536*n^6 + 330834*n^5 - 514332*n^4 + 484382*n^3 - 262149*n^2 + 72342*n - 7560)/241920.
G.f.: (32*z^5 + 3728*z^4 + 20400*z^3 + 20664*z^2 + 4434*z + 105)/(2*z-1)^10.
a(n) = 20*a(n-1) - 180*a(n-2) + 960*a(n-3) - 3360*a(n-4) + 8064*a(n-5) - 13440*a(n-6) + 15360*a(n-7) - 11520*a(n-8) + 5120*a(n-9) - 1024*a(n-10).
a(n) - 19*a(n-1) + 162*a(n-2) - 816*a(n-3) + 2688*a(n-4) - 6048*a(n-5) + 9408*a(n-6) - 9984*a(n-7) + 6912*a(n-8) - 2816*a(n-9) + 512*a(n-10) = 321*2^(n-1).

A171220 a(n) = (2n + 1)*5^n.

Original entry on oeis.org

1, 15, 125, 875, 5625, 34375, 203125, 1171875, 6640625, 37109375, 205078125, 1123046875, 6103515625, 32958984375, 177001953125, 946044921875, 5035400390625, 26702880859375, 141143798828125, 743865966796875, 3910064697265625, 20503997802734375, 107288360595703125
Offset: 0

Views

Author

Jaume Oliver Lafont, Dec 05 2009

Keywords

Comments

Inserting x=1/sqrt(b) into the power series expansion of arctanh(x) yields the general BBP-type formula log((sqrt(b)+1)/(sqrt(b)-1))*sqrt(b)/2 = Sum_{k>=0} 1/((2k+1)b^k).
This sequence illustrates case b=5, with
Sum_{k>=0} 1/a(k) = sqrt(5)*log((1+sqrt(5))/2).

Crossrefs

Cf. A014480 ((2n+1)*2^n), A124647 ((2n+1)*3^n), A058962 ((2n+1)*4^n), A155988 ((2n+1)*9^n), A165283 ((2n+1)*16^n), A166725 ((2n+1)*25^n).

Programs

  • Magma
    [(2*n+1)*5^n: n in [0..25]]; // Vincenzo Librandi, Jun 08 2011
  • PARI
    a(n)=(2*n+1)*5^n
    

Formula

a(n) = 10*a(n-1) - 25*a(n-2).
O.g.f: (1+5*x)/(1-5*x)^2.
Sum_{n>=0} (-1)^n/a(n) = sqrt(5)*arctan(1/sqrt(5)). - Amiram Eldar, Feb 26 2022
E.g.f.: exp(5*x)*(1 + 10*x). - Stefano Spezia, May 09 2023

A199299 a(n) = (2*n + 1)*6^n.

Original entry on oeis.org

1, 18, 180, 1512, 11664, 85536, 606528, 4199040, 28553472, 191476224, 1269789696, 8344332288, 54419558400, 352638738432, 2272560758784, 14575734521856, 93096626946048, 592433080565760, 3757718396731392, 23765029860409344, 149902496042582016, 943288877536247808
Offset: 0

Views

Author

Philippe Deléham, Nov 04 2011

Keywords

Crossrefs

Programs

  • Magma
    [(2*n+1)*6^n: n in [0..30]]; // Vincenzo Librandi, Nov 05 2011
    
  • Mathematica
    a[n_] := (2*n + 1)*6^n; Array[a, 25, 0] (* Amiram Eldar, Dec 10 2022 *)
  • PARI
    a(n) = (2*n+1)*6^n \\ Amiram Eldar, Dec 10 2022

Formula

a(n) = 12*a(n-1) - 36*a(n-2).
G.f.: (1+6*x)/(1-6*x)^2.
a(n) = 6*a(n-1) + 2*6^n. - Vincenzo Librandi, Nov 05 2011
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(6)*arccoth(sqrt(6)).
Sum_{n>=0} (-1)^n/a(n) = sqrt(6)*arccot(sqrt(6)). (End)
E.g.f.: exp(6*x)*(1 + 12*x). - Stefano Spezia, May 07 2023

A073774 Number of plane binary trees of size n+3 and height n.

Original entry on oeis.org

0, 0, 0, 4, 68, 376, 1440, 4736, 14272, 40576, 110592, 291840, 750592, 1890304, 4677632, 11403264, 27443200, 65306624, 153878528, 359399424, 832831488, 1916272640, 4380950528, 9957277696, 22510829568, 50642026496, 113413980160
Offset: 0

Views

Author

Antti Karttunen, Aug 11 2002

Keywords

Crossrefs

Programs

Formula

a(n) = A073345(n+3, n).
a(n < 3) = 0, a(3) = 4, a(n) = 1/12 * 2^(n-1) * (2*n^3 + 9*n^2 - 23*n - 78) or a(n) = 2^(n-2) * |A073775(n-3)| from n >= 3 onward.

A199300 a(n) = (2*n + 1)*7^n.

Original entry on oeis.org

1, 21, 245, 2401, 21609, 184877, 1529437, 12353145, 98001617, 766718533, 5931980229, 45478515089, 346032180025, 2616003280989, 19668469112621, 147174406808233, 1096686708796833, 8142067989552245, 60251303122686613, 444556912229552577, 3271482918202092041
Offset: 0

Views

Author

Philippe Deléham, Nov 04 2011

Keywords

Crossrefs

Programs

  • Magma
    [(2*n+1)*7^n: n in [0..30]]; // Vincenzo Librandi, Nov 05 2011
    
  • Mathematica
    a[n_] := (2*n + 1)*7^n; Array[a, 25, 0] (* Amiram Eldar, Dec 10 2022 *)
    LinearRecurrence[{14,-49},{1,21},30] (* Harvey P. Dale, Mar 26 2025 *)
  • PARI
    a(n) = (2*n+1)*7^n \\ Amiram Eldar, Dec 10 2022

Formula

a(n) = 14*a(n-1) - 49*a(n-2).
G.f.: (1+7*x)/(1-7*x)^2.
a(n) = 7*a(n-1) + 2*7^n. - Vincenzo Librandi, Nov 05 2011
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(7)*arccoth(sqrt(7)).
Sum_{n>=0} (-1)^n/a(n) = sqrt(7)*arccot(sqrt(7)). (End)
E.g.f.: exp(7*x)*(1 + 14*x). - Stefano Spezia, May 09 2023

Extensions

a(15) corrected by Vincenzo Librandi, Nov 05 2011

A199301 a(n) = (2n+1)*8^n.

Original entry on oeis.org

1, 24, 320, 3584, 36864, 360448, 3407872, 31457280, 285212672, 2550136832, 22548578304, 197568495616, 1717986918400, 14843406974976, 127543348822016, 1090715534753792, 9288674231451648, 78812993478983680, 666532744850833408, 5620492334958379008, 47269781688880726016
Offset: 0

Views

Author

Philippe Deléham, Nov 04 2011

Keywords

Crossrefs

Cf. A001018 (Powers of 8), A005408 (2n+1).

Programs

Formula

a(n) = 16*a(n-1)-64*a(n-2).
G.f.: (1+8*x)/(1-8*x)^2.
a(n) = 8*(a(n-1)+2^(3*n-2)). - Vincenzo Librandi, Nov 05 2011
a(n) = A005408(n) * A001018(n). - Wesley Ivan Hurt, Oct 30 2014
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(8)*arccoth(sqrt(8)).
Sum_{n>=0} (-1)^n/a(n) = sqrt(8)*arccot(sqrt(8)). (End)
E.g.f.: exp(8*x)*(1 + 16*x). - Stefano Spezia, May 09 2023

Extensions

a(18) corrected by Vincenzo Librandi, Nov 05 2011

A073773 Number of plane binary trees of size n+2 and height n.

Original entry on oeis.org

0, 0, 0, 6, 40, 152, 480, 1376, 3712, 9600, 24064, 58880, 141312, 333824, 778240, 1794048, 4096000, 9273344, 20840448, 46530560, 103284736, 228065280, 501219328, 1096810496, 2390753280, 5192548352, 11240734720, 24259854336
Offset: 0

Views

Author

Antti Karttunen, Aug 11 2002

Keywords

Examples

			a(3) = 6 because there exists only these six binary trees of size 5 and height 3:
_\/\/_______\/\/_\/_\/_____\/_\/_\/___\/___V_V___
__\/_\/___\/_\/___\/_\/___\/_\/___\/_\/___\/_\/__
___\./_____\./_____\./_____\./_____\./_____\./___
		

Crossrefs

Programs

  • Maple
    A073773 := n -> `if`((n < 3),0,((n^2 - 6)*2^(n-2)));

Formula

a(n) = A073345(n+2, n).
a(n < 3) = 0, a(n) = ((n^2 - 6)*2^(n-2)).
Previous Showing 21-30 of 41 results. Next