1, 0, 2, 0, 3, 4, 0, 5, 6, 8, 0, 7, 9, 12, 16, 0, 11, 10, 18, 24, 32, 0, 13, 14, 20, 36, 48, 64, 0, 17, 15, 27, 40, 72, 96, 128, 0, 19, 21, 28, 54, 80, 144, 192, 256, 0, 23, 22, 30, 56, 108, 160, 288, 384, 512, 0, 29, 25, 42, 60, 112, 216, 320, 576, 768, 1024
Offset: 0
A120036
Number of 5-almost primes 5ap such that 2^n < 5ap <= 2^(n+1).
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 5, 8, 21, 41, 91, 199, 403, 873, 1767, 3740, 7709, 15910, 32759, 67185, 138063, 281566, 576165, 1173435, 2390366, 4860357, 9873071, 20033969, 40612221, 82266433, 166483857, 336713632, 680482316, 1374413154, 2774347425
Offset: 0
(2^5, 2^6] there is one semiprime, namely 48. 32 was counted in the previous entry.
Cf.
A014614,
A114453,
A036378,
A120033,
A120034,
A120035,
A120036,
A120037,
A120038,
A120039,
A120040,
A120041,
A120042,
A120043.
-
FiveAlmostPrimePi[n_] := Sum[ PrimePi[n/(Prime@i*Prime@j*Prime@k*Prime@l)] - l + 1, {i, PrimePi[n^(1/5)]}, {j, i, PrimePi[(n/Prime@i)^(1/4)]}, {k, j, PrimePi[(n/(Prime@i*Prime@j))^(1/3)]}, {l, k, PrimePi[(n/(Prime@i*Prime@j*Prime@k))^(1/2)]}]; t = Table[ FiveAlmostPrimePi[2^n], {n, 0, 37}]; Rest@t - Most@t
A206349
Even numbers k such that 6k+1, 12k+1, 18k+1, 36k+1 and 72k+1 are all primes.
Original entry on oeis.org
380, 506, 3796, 6006, 8976, 9186, 10920, 12896, 14476, 14800, 15386, 32326, 38460, 39536, 40420, 41456, 43430, 60076, 74676, 76986, 82530, 87390, 99486, 107926, 112840, 126996, 127920, 144326, 179566, 181986, 188526, 193006, 194616, 205200, 217520, 230370
Offset: 1
-
Select[Range[250000], PrimeQ[6 #+1] && PrimeQ[12 #+1] && PrimeQ[18 #+1] && PrimeQ[36 #+1] && PrimeQ[72 #+1] && Mod[#,2] == 0&]
-
is_A206349(n,c=72)=!bittest(n,0)&&!until(bittest(c\=2, 0)&&9>c+=3, isprime(n*c+1)||return) \\ M. F. Hasler, Apr 14 2015
A046304
Divisible by at least 5 primes (counted with multiplicity).
Original entry on oeis.org
32, 48, 64, 72, 80, 96, 108, 112, 120, 128, 144, 160, 162, 168, 176, 180, 192, 200, 208, 216, 224, 240, 243, 252, 256, 264, 270, 272, 280, 288, 300, 304, 312, 320, 324, 336, 352, 360, 368, 378, 384, 392, 396, 400, 405, 408, 416, 420, 432, 440, 448, 450, 456
Offset: 1
-
Select[Range[500],PrimeOmega[#]>4&] (* Harvey P. Dale, Apr 16 2013 *)
-
is(n)=bigomega(n)>4 \\ Charles R Greathouse IV, Sep 17 2015
-
from math import prod, isqrt
from sympy import primerange, primepi, integer_nthroot
def A046304(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def almostprimepi(n, k):
if k==0: return int(n>=1)
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n, 0, 1, 1, k)) if k>1 else primepi(n))
def f(x): return n+1+sum(almostprimepi(x,k) for k in range(1,5))
return bisection(f,n,n) # Chai Wah Wu, Mar 29 2025
A046318
Odd numbers divisible by exactly 5 primes (counted with multiplicity).
Original entry on oeis.org
243, 405, 567, 675, 891, 945, 1053, 1125, 1323, 1377, 1485, 1539, 1575, 1755, 1863, 1875, 2079, 2205, 2295, 2349, 2457, 2475, 2511, 2565, 2625, 2925, 2997, 3087, 3105, 3125, 3213, 3267, 3321, 3465, 3483, 3591, 3675, 3807, 3825, 3861, 3915, 4095, 4125
Offset: 1
A067820
The start of a record-breaking run of consecutive integers with a number of prime factors (counted with multiplicity) equal to 5.
Original entry on oeis.org
32, 944, 15470, 57967, 632148, 14845324, 69921004, 888781058, 2674685524, 10077383364, 21117216104, 393370860205, 3157222675953, 5509463413255, 24819420480104, 361385490681003, 441826936079342
Offset: 1
a(3)=15470 because 15470 is the start of a record breaking run of 3 consecutive integers (15470 to 15472) each having 5 prime factors; i.e. bigomega(n)=A001222(n)=5 for n = 15470, ..., 15472.
-
bigomega[n_] := Plus@@Last/@FactorInteger[n]; For[n=1; m=l=0, True, n++, If[bigomega[n]==5, l++, If[l>m, m=l; Print[n-l, " ", l]]; l=0]]
Table[SequencePosition[PrimeOmega[Range[15*10^6]],PadRight[{},n,5],1][[All,1]],{n,6}]//Flatten (* The program generates the first six terms of the sequence. *) (* Harvey P. Dale, Sep 03 2022 *)
A111345
Pierpont 5-almost primes. 5-almost primes of form (2^K)*(3^L)+1.
Original entry on oeis.org
4375, 19684, 7077889, 7962625, 34012225, 100663297, 129140164, 452984833, 459165025, 544195585, 644972545, 918330049, 5159780353, 7346640385, 8589934593, 13947137605, 14495514625, 23219011585, 27518828545, 28991029249
Offset: 1
a(1) = 4375 = (2^1)*(3^7)+1 = 5 * 5 * 5 * 5 * 7.
a(2) = 19684 = (2^0)*(3^9)+1 = 2 * 2 * 7 * 19 * 37.
a(3) = 7077889 = (2^18)*(3^3)+1 = 7 * 13 * 13 * 31 * 193 (prime factors each have all odd digits).
a(4) = 7962625 = (2^15)*(3^5)+1 = 5 * 5 * 5 * 11 * 5791 (again, coincidentally, prime factors each have all odd
digits).
a(7) = 129140164 = (2^0)*(3^17)+1 = 2 * 2 * 103 * 307 * 1021.
a(15) = 8589934593 = (2^33)*(3^0)+1 = 3 * 3 * 67 * 683 * 20857.
a(21) = 34359738369 = (2^35)*(3^0)+1 = 3 * 11 * 43 * 281 * 86171.
a(30) = 793437161473 = (2^11)*(3^18)+1 = 11 * 11 * 11 * 43 * 13863281.
a(32) = 847288609444 = (2^0)*(3^25)+1 = 2 * 2 * 61 * 151 * 22996651.
a(47) = 68630377364884 = (2^0)*(3^29)+1 = 2 * 2 * 523 * 6091 * 5385997.
a(48) = 70368744177665 = (2^46)*(3^0)+1 = 5 * 277 * 1013 * 1657 * 30269.
a(81) = 50031545098999708 = (2^0)*(3^35)+1 = 2 * 2 * 61 * 547 * 374857981681.
a(89) = 144115188075855873 = (2^57)*(3^0)+1 = 3 * 3 * 571 * 174763 * 160465489.
a(99) = 450283905890997364 = (2^0)*(3^37)+1 = 2 * 2 * 18427 * 107671 * 56737873.
a(113) = 4611686018427387905 = (2^62)*(3^0)+1 = 5 * 5581 * 8681 * 49477 * 384773.
A005109 gives the Pierpont primes, which are primes of the form (2^K)*(3^L)+1.
A113432 gives the Pierpont semiprimes, 2-almost primes of the form (2^K)*(3^L)+1.
A112797 gives the Pierpont 3-almost primes, of the form (2^K)*(3^L)+1.
A111344 gives the Pierpont 4-almost primes, of the form (2^K)*(3^L)+1.
A111346 gives the Pierpont 6-almost primes, of the form (2^K)*(3^L)+1.
A113739 gives the Pierpont 7-almost primes, of the form (2^K)*(3^L)+1.
A113740 gives the Pierpont 8-almost primes, of the form (2^K)*(3^L)+1.
A113741 gives the Pierpont 9-almost primes, of the form (2^K)*(3^L)+1.
-
list(lim)=my(v=List(), L=lim\1-1); for(e=0, logint(L, 3), my(t=3^e); while(t<=L, if(bigomega(t+1)==5, listput(v, t+1)); t*=2)); Set(v) \\ Charles R Greathouse IV, Feb 01 2017
A046331
Palindromes with exactly 5 prime factors (counted with multiplicity).
Original entry on oeis.org
252, 272, 464, 616, 656, 696, 828, 848, 888, 2552, 4004, 4554, 4664, 4884, 5445, 5775, 6006, 6996, 8118, 8228, 8778, 8888, 9009, 18081, 18981, 20202, 20502, 21012, 21812, 22022, 23432, 23532, 24642, 25552, 25652, 26862, 27272, 27672, 28182
Offset: 1
A109383
5-almost primes of the form semiprime + 1.
Original entry on oeis.org
112, 120, 162, 300, 304, 378, 392, 396, 408, 520, 552, 567, 592, 612, 630, 656, 675, 680, 688, 696, 700, 750, 780, 918, 924, 944, 952, 980, 990, 1044, 1100, 1116, 1136, 1140, 1160, 1168, 1170, 1242, 1264, 1272, 1300, 1323, 1352, 1372, 1380, 1386, 1416, 1470
Offset: 1
a(1) = 112 because (3*37)+1 = (2^4) * 7 = 112.
a(2) = 120 because (7*17)+1 = (2^3) * 3 * 5 = 120.
a(3) = 162 because (7*23)+1 = 2 * (3^4) = 162.
Primes of the form semiprime + 1 are in
A005385 (safe primes).
Semiprimes of the form semiprime + 1 are in
A109373.
3-almost primes of the form semiprime + 1 are in
A109067.
4-almost primes of the form semiprime + 1 are in
A109287.
5-almost primes of the form semiprime + 1 are in this sequence.
Least n-almost prime of the form semiprime + 1 are in
A128665.
-
f[n_] := Plus @@ Last /@ FactorInteger[n];Select[Range[1500], f[ # ] == 5 && f[ # - 1] == 2 &] (* Ray Chandler, Mar 20 2007 *)
-
v=vector(10000);i=0; for(n=1,9e99, if(issemi(n)&bigomega(n+1)==5, v[i++]=n+1;if(i==#v, return))); v \\ Charles R Greathouse IV, Feb 14 2011
Comments