cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 63 results. Next

A098387 Prime(n)+Log2(n), where Log2=A000523.

Original entry on oeis.org

2, 4, 6, 9, 13, 15, 19, 22, 26, 32, 34, 40, 44, 46, 50, 57, 63, 65, 71, 75, 77, 83, 87, 93, 101, 105, 107, 111, 113, 117, 131, 136, 142, 144, 154, 156, 162, 168, 172, 178, 184, 186, 196, 198, 202, 204, 216, 228, 232, 234, 238, 244, 246, 256, 262, 268, 274, 276
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 06 2004

Keywords

Examples

			a(10) = A000040(10) + A000523(10) = 29 + 3 = 32.
		

Crossrefs

A139027 This is to A139026 as A139026 to A139025, see A139025 for details.

Original entry on oeis.org

1292, 3865, 4666, 8973, 13936, 50339, 57266, 67597, 72316, 85343, 110934, 132941, 147990, 220203, 226652, 270239, 272950, 313361, 366186, 375253, 392090, 409619, 412024, 415237, 469982, 511263, 556808, 635279, 640716, 654559, 711018, 721629
Offset: 1

Views

Author

Zak Seidov, Apr 07 2008

Keywords

Comments

Notice that a(n)-n is always prime by definition, e.g.,
a(1) - 1 = 1291, a(2) - 2 = 3863, a(3) - 3 = 4663, a(4) - 4 = 8969, etc.

Crossrefs

A139028 This is to A139027 as A139027 to A139026, see A139025 for details.

Original entry on oeis.org

270240, 375255, 635282, 1000695, 2039428, 2602013, 3398274, 3748771, 4300120, 4889577, 5643252, 6595775, 8684760, 12489373, 12758734, 15186995, 15557178, 17151151, 17988320, 18564859, 19878764, 20317745, 21560274, 22466983
Offset: 1

Views

Author

Zak Seidov, Apr 07 2008

Keywords

Comments

Notice that a(n)-n is always prime by definition, e.g.,
a(1) - 1 = 270239, a(2) - 2 = 375253, a(3) - 3 = 635279, a(4) - 4 = 1000691, etc.

Crossrefs

A139029 This is to A139028 as A139028 to A139027, see A139025 for details.

Original entry on oeis.org

43448724, 59672019, 102128690, 113904945, 145135734, 169755139
Offset: 1

Views

Author

Zak Seidov, Apr 07 2008

Keywords

Comments

Notice that a(n)-n is always prime by definition, e.g.,
a(1) - 1 = 43448723, a(2) - 2 = 59672017, a(3) - 3 = 102128687, a(4) - 4 = 113904941, etc.

Crossrefs

A060646 Bonse sequence: a(n) = minimal j such that n-j+1 < prime(j).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 18, 18
Offset: 1

Views

Author

Frank Ellermann, Apr 17 2001

Keywords

Comments

For 35.

Examples

			For n=5, j=3 gives 5-3+1 = 3 < prime(3) = 5, true; but if j=2 we get 5-2+1 = 4 which is not < prime(2) = 3; hence a(5) = 3.
a(75)=18 because 75-18+1=58 < 61=prime(18), but 75-17+1=59=prime(17).
		

References

  • R. Remak, Archiv d. Math. u. Physik (3) vol. 15 (1908) 186-193

Crossrefs

Cf. A014688.

Programs

  • Haskell
    import Data.List (findIndex)
    import Data.Maybe (fromJust)
    a060646 n = (fromJust $ findIndex ((n+1) <) a014688_list) + 1
    -- Reinhard Zumkeller, Sep 16 2011
    
  • Mathematica
    Table[j=0; While[j++; n-j+1 >= Prime[j]]; j, {n, 1, 76}] (* Jean-François Alcover, Aug 30 2011 *)
  • Python
    from sympy import nextprime
    from itertools import count, islice
    def agen(): # generator of terms
        n, pj = 1, 2
        for j in count(1):
            while n - j + 1 < pj: yield j; n += 1
            pj = nextprime(pj)
    print(list(islice(agen(), 76))) # Michael S. Branicky, Aug 09 2022

A082500 a(n) = ceiling(n/2) if n is odd, or prime(n/2) otherwise.

Original entry on oeis.org

1, 2, 2, 3, 3, 5, 4, 7, 5, 11, 6, 13, 7, 17, 8, 19, 9, 23, 10, 29, 11, 31, 12, 37, 13, 41, 14, 43, 15, 47, 16, 53, 17, 59, 18, 61, 19, 67, 20, 71, 21, 73, 22, 79, 23, 83, 24, 89, 25, 97, 26, 101, 27, 103, 28, 107, 29, 109, 30, 113, 31, 127, 32, 131, 33, 137, 34, 139, 35, 149, 36
Offset: 1

Views

Author

Reinhard Zumkeller, May 11 2003

Keywords

Comments

Alternatively, list of pairs n, prime(n). - Zak Seidov, Feb 18 2005
a(n) = (n mod 2)*(n+1)/2 + (1 - n mod 2)*A000040(n/2);
k>0: a(2*k-1)=k, a(2*k)=A000040(k), A049084(a(2*k))=k; a(2*k-1)+a(2*k)=A014688(k).
Each prime occurs at two positions, the distances between them are: 1, 1, 3, 5, 11, 13, 19, 21, 27, 37, 39, 49, 55, 57, 63, 73, 83, 85, ... - Zak Seidov, Mar 06 2011
See A239636. - Reinhard Zumkeller, Mar 22 2014

Crossrefs

A000027 and A000040 interleaved. - Omar E. Pol, Mar 13 2012

Programs

  • Haskell
    import Data.List (transpose)
    a082500 n = a082500_list !! (n-1)
    a082500_list = concat $ transpose [[1..], a000040_list]
    -- Reinhard Zumkeller, Mar 22 2014, Mar 19 2011, Oct 14 2010
    
  • Magma
    [IsOdd(n) select Ceiling(n/2) else NthPrime(n div 2): n in[1..71]];  // Bruno Berselli, Mar 07 2011
  • Mathematica
    s=Range[500];Do[s=Insert[s,Prime[n],2n],{n,100}];s (* Zak Seidov Mar 05 2011 *)
    Table[If[OddQ[n],Ceiling[n/2 ],Prime[n/2]],{n,80}] (* Harvey P. Dale, Feb 22 2025 *)

A093571 LeastCommonMultiple({k+prime(k): 1<=k<=n}).

Original entry on oeis.org

3, 15, 120, 1320, 2640, 50160, 50160, 451440, 902880, 11737440, 82162080, 575134560, 575134560, 575134560, 17829171360, 410070941280, 410070941280, 32395604361120, 1393010987528160, 1393010987528160, 65471516413823520
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 01 2004

Keywords

Comments

a(n) <= A093570(n).

Crossrefs

Programs

  • Mathematica
    Table[LCM @@ Table[k + Prime[k], {k, n}], {n, 21}] (* Robert G. Wilson v, Apr 07 2004 *)

Extensions

More terms from Robert G. Wilson v, Apr 07 2004

A098393 Prime(n)+Log2(Log2(prime(n))), where Log2=A000523.

Original entry on oeis.org

2, 3, 6, 8, 12, 14, 19, 21, 25, 31, 33, 39, 43, 45, 49, 55, 61, 63, 69, 73, 75, 81, 85, 91, 99, 103, 105, 109, 111, 115, 129, 133, 139, 141, 151, 153, 159, 165, 169, 175, 181, 183, 193, 195, 199, 201, 213, 225, 229, 231, 235, 241, 243, 253, 260, 266, 272, 274, 280
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 06 2004

Keywords

Comments

a(n) = A000040(n) + A098391(n).

Examples

			a(10) = A000040(10) + A098391(10) = 29 + 2 = 31.
		

Crossrefs

Programs

  • Mathematica
    #+Floor[Log[2,Floor[Log[2,#]]]]&/@Prime[Range[60]] (* Harvey P. Dale, May 07 2017 *)

A135681 a(n)=n if n=1 or if n=prime. Otherwise, n=4 if n is even and n=1 if n is odd.

Original entry on oeis.org

1, 2, 3, 4, 5, 4, 7, 4, 1, 4, 11, 4, 13, 4, 1, 4, 17, 4, 19, 4, 1, 4, 23, 4, 1, 4, 1, 4, 29, 4, 31, 4, 1, 4, 1, 4, 37, 4, 1, 4, 41, 4, 43, 4, 1, 4, 47, 4, 1, 4, 1, 4, 53, 4, 1, 4, 1, 4, 59, 4, 61, 4, 1, 4, 1, 4, 67, 4, 1, 4, 71, 4, 73
Offset: 1

Views

Author

Mohammad K. Azarian, Dec 01 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[PrimeQ[n] || n == 1, n, If[EvenQ[n], 4, 1] ]; Table[a[n], {n,1,25}] (* G. C. Greubel, Oct 26 2016 *)

A230980 Number of primes <= n, starting at n=0.

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 21, 21
Offset: 0

Views

Author

Omar E. Pol, Nov 02 2013

Keywords

Comments

Essentially identical to A000720, except that sequence, being an arithmetical sequence, starts at n = 1. - N. J. A. Sloane, Jun 21 2017
Also, on the first quadrant of the square grid, consider a diagram in which the number of cells in the horizontal bar of the k-th row is equal to the k-th prime, see example. The total length of the boundary segments between the structure formed by the first k horizontal bars and the structure formed by the vertical bars, from [0, 0], is equal to A014688(k). a(n) is the number of cells in the vertical bar of the n-th column.
Note that in a similar diagram for A000720 the lengths of the horizontal bars give A006093 (primes minus 1) not A000040 (the prime numbers) because A000720 has only one zero, not two.
Also, the number of distinct prime factors of the factorial number n!. - Torlach Rush, Jan 17 2014
The lengths of the boundary horizontal segments between the structure formed by the horizontal bars and the structure formed by the vertical bars of the diagram gives A054541. The zig-zag path formed by the boundary segments is in A230850. - Omar E. Pol, Jun 22 2017

Examples

			Illustration of initial terms:
.     _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
31   |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
29   |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
23   |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | |
19   |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | |
17   |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | |
13   |_ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | |
11   |_ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | |
7    |_ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | |
5    |_ _ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | | | |
3    |_ _ _| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
2    |_ _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
n:    0 1 2 3 4 5 6 7 8 9...
a(n): 0 0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10
		

Crossrefs

Programs

Extensions

Offset and definition changed by N. J. A. Sloane, Jun 21 2017
Previous Showing 21-30 of 63 results. Next