cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A074088 Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(2,3).

Original entry on oeis.org

0, 0, 0, 0, 21, 120, 585, 2508, 10122, 39042, 145974, 532704, 1907451, 6725004, 23407287, 80591148, 274899288, 930128646, 3124838844, 10432356000, 34634029713, 114403303008, 376184538165, 1231890463020, 4018920819606
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002

Keywords

Comments

The coefficient of q^0 is A014983(n+1).

Examples

			The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=7, nu(3)=20+6q, nu(4)=61+33q+21q^2, nu(5)=182+144q+120q^2+78q^3+18q^4, so the coefficients of q^2 are 0,0,0,0,21,120.
		

Crossrefs

Coefficients of q^0, q^1 and q^3 are in A014983, A074087 and A074089. Related sequences with other values of b and lambda are in A074082-A074086.

Programs

  • Magma
    I:=[0,0,21,120,585,2508]; [0,0] cat [n le 6 select I[n] else 6*Self(n-1) -3*Self(n-2) -28*Self(n-3) +9*Self(n-4) +54*Self(n-5) +27*Self(n-6): n in [1..30]]; // G. C. Greubel, May 26 2018
  • Mathematica
    b=2; lambda=3; expon=2; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
    (* Second program: *)
    Join[{0,0},LinearRecurrence[{6,-3,-28,9,54,27},{0,0,21,120,585,2508},40]] (* Harvey P. Dale, Apr 28 2012 *)
  • PARI
    x='x+O('x^30); concat([0,0,0,0], Vec((21*x^4 -6*x^5 -72*x^6 -54*x^7)/(1-2*x-3*x^2)^3)) \\ G. C. Greubel, May 26 2018
    

Formula

G.f.: (21*x^4 -6*x^5 -72*x^6 -54*x^7)/(1-2*x-3*x^2)^3.
a(n) = 6*a(n-1) -3*a(n-2) -28*a(n-3) +9*a(n-4) +54*a(n-5) +27*a(n-6) for n>=8.

Extensions

Edited by Dean Hickerson, Aug 21 2002

A248811 Triangle read by rows: T(n,k) is the coefficient A_k in the transformation of 1 + x + x^2 + ... + x^n to the polynomial A_k*(x+3)^k for 0 <= k <= n.

Original entry on oeis.org

1, -2, 1, 7, -5, 1, -20, 22, -8, 1, 61, -86, 46, -11, 1, -182, 319, -224, 79, -14, 1, 547, -1139, 991, -461, 121, -17, 1, -1640, 3964, -4112, 2374, -824, 172, -20, 1, 4921, -13532, 16300, -11234, 4846, -1340, 232, -23, 1, -14762, 45517, -62432, 50002, -25772, 8866, -2036, 301, -26, 1, 44287, -151313, 232813, -212438, 127318, -52370, 14974, -2939, 379, -29, 1
Offset: 0

Views

Author

Derek Orr, Oct 14 2014

Keywords

Comments

Consider the transformation 1 + x + x^2 + x^3 + ... + x^n = A_0*(x+3)^0 + A_1*(x+3)^1 + A_2*(x+3)^2 + ... + A_n*(x+3)^n. This sequence gives A_0, ..., A_n as the entries in the n-th row of this triangle, starting at n = 0.

Examples

			       1;
      -2,       1;
       7,      -5,      1;
     -20,      22,     -8,       1;
      61,     -86,     46,     -11,      1;
    -182,     319,   -224,      79,    -14,      1;
     547,   -1139,    991,    -461,    121,    -17,     1;
   -1640,    3964,  -4112,    2374,   -824,    172,   -20,     1;
    4921,  -13532,  16300,  -11234,   4846,  -1340,   232,   -23,   1;
  -14762,   45517, -62432,   50002, -25772,   8866, -2036,   301, -26,   1;
   44287, -151313, 232813, -212438, 127318, -52370, 14974, -2939, 379, -29, 1;
		

Crossrefs

Programs

  • Magma
    [[(&+[(-3)^(j-k)*Binomial(j,k): j in [0..n]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, May 27 2018
  • Mathematica
    T[n_, k_]:= Sum[(-3)^(j-k)*Binomial[j,k], {j,0,n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, May 27 2018 *)
  • PARI
    for(n=0,20,for(k=0,n,print1(sum(i=0,n,((-3)^(i-k)* binomial(i, k)) ),", ")))
    

Formula

T(n,n-1) = -3*n + 1 for n > 0.
T(n,0) = A014983(n+1).
T(n,1) = (-1)^(n+1)*A191008(n-1).
Row n sums to A077925(n).

A345035 a(n) = Sum_{k=1..n} (-3)^(floor(n/k) - 1).

Original entry on oeis.org

1, -2, 11, -28, 81, -234, 739, -2216, 6545, -19594, 59139, -177408, 531181, -1593614, 4783799, -14351032, 43044597, -129133854, 387426799, -1162281332, 3486765521, -10460293354, 31381119459, -94143358440, 282429356977, -847288080362, 2541866366171
Offset: 1

Views

Author

Seiichi Manyama, Jun 06 2021

Keywords

Crossrefs

Column k=3 of A345033.

Programs

  • Mathematica
    a[n_] := Sum[(-3)^(Floor[n/k] - 1), {k, 1, n}]; Array[a, 30] (* Amiram Eldar, Jun 06 2021 *)
  • PARI
    a(n) = sum(k=1, n, (-3)^(n\k-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k*(1-x^k)/(1+3*x^k))/(1-x))

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} x^k * (1 - x^k)/(1 + 3*x^k).

A124137 A signed aerated and skewed version of A038137.

Original entry on oeis.org

1, 0, 1, -1, 0, 2, 0, -2, 0, 3, 1, 0, -5, 0, 5, 0, 3, 0, -10, 0, 8, -1, 0, 9, 0, -20, 0, 13, 0, -4, 0, 22, 0, -38, 0, 21, 1, 0, -14, 0, 51, 0, -71, 0, 34, 0, 5, 0, -40, 0, 111, 0, -130, 0, 55, -1, 0, 20, 0, -105, 0, 233, 0, -235, 0, 89
Offset: 0

Views

Author

Philippe Deléham, Nov 30 2006

Keywords

Examples

			Triangle begins:
1;
0, 1;
-1, 0, 2;
0, -2, 0, 3;
1, 0, -5, 0, 5;
0, 3, 0, -10, 0, 8;
-1, 0, 9, 0, -20, 0, 13;
0, -4, 0, 22, 0, -38, 0, 21;
1, 0, -14, 0, 51, 0, -71, 0, 34;
0, 5, 0, -40, 0, 111, 0, -130, 0, 55;
		

Crossrefs

Programs

  • Mathematica
    T[0, 0]:= 1; T[n_, n_]:= Fibonacci[n + 1]; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n - 1, k - 1] + T[n - 2, k - 2] - T[n - 2, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten  (* G. C. Greubel, May 27 2018 *)
  • PARI
    {T(n,k) = if(n==0 && k==0, 1, if(k==n, fibonacci(n+1), if(k<0 || nG. C. Greubel, May 27 2018

Formula

T(n,k) = T(n-1,k-1) + T(n-2,k-2) - T(n-2,k), T(0,0)=1, T(n,k)=0 if k<0 or if nA000045(n+1).
Sum_{0<=k<=n} x^k*T(n,k)= A014983(n+1), A033999(n), A056594(n), A000012(n), A015518(n+1), A015525(n+1) for x=-2, -1, 0, 1, 2, 3 respectively.

Extensions

Corrected and extended by Philippe Deléham, Apr 05 2012

A072985 Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n >= 2, nu(n) = b*nu(n-1) + lambda*(n-1)_q*nu(n-2) with (b,lambda)=(2,3), where (n)_q = (1+q+...+q^(n-1)) and q is a root of unity.

Original entry on oeis.org

1, 2, 7, 6, 21, 18, 63, 54, 189, 162, 567, 486, 1701, 1458, 5103, 4374, 15309, 13122, 45927, 39366, 137781, 118098, 413343, 354294, 1240029, 1062882, 3720087, 3188646, 11160261, 9565938, 33480783, 28697814, 100442349, 86093442
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Instead of listing the coefficients of the highest power of q in each nu(n), if we list the coefficients of the smallest power of q (i.e., constant terms), we get a sequence of weighted Fibonacci numbers described by f(0)=1, f(1)=1, for n >= 2, f(n) = 2*f(n-1) + 3*f(n-2).

Examples

			nu(0) = 1;
nu(1) = 2;
nu(2) = 7;
nu(3) = 20 + 6q;
nu(4) = 61 + 33q + 21q^2;
nu(5) = 182 + 144q + 120q^2 + 78q^3 + 18q^4;
nu(6) = 547 + 570q + 585q^2 + 501q^3 + 381q^4 + 162q^5 + 63q^6; ...
The coefficients of the highest power of q give this sequence.
		

Crossrefs

Cf. A014983.

Programs

  • Magma
    [1] cat [(1/6)*(13+(-1)^n)*3^Floor(n/2): n in [1..40]]; // Vincenzo Librandi, Jul 20 2013
    
  • Mathematica
    CoefficientList[Series[-(1 + 2 x + 4 x^2) / (-1 + 3 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 20 2013 *)
    Join[{1}, LinearRecurrence[{0, 3}, {2, 7}, 33]] (* Jean-François Alcover, Sep 23 2017 *)
  • PARI
    x='x+O('x^30); Vec((1+2*x+4*x^2)/(1-3*x^2)) \\ G. C. Greubel, May 26 2018

Formula

For given b and lambda, the recurrence relation is given by; t(0)=1, t(1)=b, t(2) = b^2+lambda and for n >= 3, t(n) = lambda*t(n-2).
G.f.: (1 + 2*x + 4*x^2)/(1-3*x^2). - R. J. Mathar, Dec 05 2007
a(n) = 3*a(n-2) for n>2. - Ralf Stephan, Jul 19 2013
a(n) = (1/6)*(13 + (-1)^n)*3^floor(n/2) for n>0. - Ralf Stephan, Jul 19 2013

Extensions

More terms from R. J. Mathar, Dec 05 2007

A268413 a(n) = Sum_{k = 0..n} (-1)^k*14^k.

Original entry on oeis.org

1, -13, 183, -2561, 35855, -501969, 7027567, -98385937, 1377403119, -19283643665, 269971011311, -3779594158353, 52914318216943, -740800455037201, 10371206370520815, -145196889187291409, 2032756448622079727, -28458590280709116177, 398420263929927626479
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2016

Keywords

Comments

Alternating sum of powers of 14.
More generally, the ordinary generating function for the Sum_{k = 0..n} (-1)^k*m^k is 1/(1 + (m - 1)*x - m*x^2). Also, Sum_{k = 0..n} (-1)^k*m^k = ((-1)^n*m^(n + 1) + 1)/(m + 1).

Crossrefs

Cf. similar sequences of the type Sum_{k=0..n} (-1)^k*m^k: A059841 (m=1), A077925 (m=2), A014983 (m=3), A014985 (m=4), A014986 (m=5), A014987 (m=6), A014989 (m=7), A014990 (m=8), A014991 (m=9), A014992 (m=10), A014993 (m=11), A014994 (m=12), A015000 (m=13), this sequence (m=14), A239284 (m=15).

Programs

  • Magma
    I:=[1,-19]; [n le 2 select I[n] else -13*Self(n-1) +14*Self(n-2): n in [1..30]]; // G. C. Greubel, May 26 2018
  • Mathematica
    Table[((-1)^n 14^(n + 1) + 1)/15, {n, 0, 18}]
    LinearRecurrence[{-13, 14}, {1, -13}, 19]
    Table[Sum[(-1)^k*14^k, {k, 0, n}], {n, 0, 18}]
  • PARI
    x='x+O('x^30); Vec(1/(1 + 13*x - 14*x^2)) \\ G. C. Greubel, May 26 2018
    

Formula

G.f.: 1/(1 + 13*x - 14*x^2).
a(n) = ((-1)^n*14^(n + 1) + 1)/15.
a(n) = 1 - 14*a(n - 1) for n>0 and a(0)=1.
a(n) = Sum_{k = 0..n} A033999(k)*A001023(k).
Lim_{n -> infinity} a(n)/a(n + 1) = - 1/14.

A346083 Triangle, read by rows, defined by recurrence: T(n,k) = T(n-1,k-1) + (-1)^k * (2 * k + 1) * T(n-1,k) for 0 < k < n with initial values T(n,0) = T(n,n) = 1 for n >= 0 and T(i,j) = 0 if j < 0 or j > i.

Original entry on oeis.org

1, 1, 1, 1, -2, 1, 1, 7, 3, 1, 1, -20, 22, -4, 1, 1, 61, 90, 50, 5, 1, 1, -182, 511, -260, 95, -6, 1, 1, 547, 2373, 2331, 595, 161, 7, 1, 1, -1640, 12412, -13944, 7686, -1176, 252, -8, 1, 1, 4921, 60420, 110020, 55230, 20622, 2100, 372, 9, 1, 1, -14762, 307021, -709720, 607090, -171612, 47922, -3480, 525, -10, 1
Offset: 0

Views

Author

Werner Schulte, Jul 04 2021

Keywords

Examples

			The triangle T(n,k) for 0 <= k <= n starts:
n\k :  0      1      2       3      4      5     6    7  8  9
=============================================================
  0 :  1
  1 :  1      1
  2 :  1     -2      1
  3 :  1      7      3       1
  4 :  1    -20     22      -4      1
  5 :  1     61     90      50      5      1
  6 :  1   -182    511    -260     95     -6     1
  7 :  1    547   2373    2331    595    161     7    1
  8 :  1  -1640  12412  -13944   7686  -1176   252   -8  1
  9 :  1   4921  60420  110020  55230  20622  2100  372  9  1
  etc.
		

Crossrefs

Cf. A000012 (column 0 and main diagonal), A014983 (column 1), A181983 (1st subdiagonal), A002412 (2nd subdiagonal), A264851 (3rd subdiagonal without signs).
Cf. A051159.

Programs

  • Python
    from functools import cache
    @cache
    def T(n, k):
        if k == 0 or k == n: return 1
        return T(n-1, k-1) + (-1)**k*(2*k + 1)*T(n-1, k)
    for n in range(10):
        print([T(n, k) for k in range(n+1)]) # Peter Luschny, Jul 22 2021

Formula

G.f. of column k >= 0: col(t,k) = Sum_{n >= k} T(n,k) * t^n = t^k / (Product_{i=0..k} (1 - (-1)^i * (2 * i + 1) * t)), i.e., col(t,k) = col(t,k-1) * t / (1 - (-1)^k * (2 * k + 1) * t) for k > 0.
Matrix inverse M = T^(-1) has row polynomials p(n,x) = Sum_{k=0..n} M(n,k) * x^k = Product_{i=1..n} (x + (-1)^i * (2 * i - 1)) for n >= 0 and empty product 1, i.e., p(n,x) = p(n-1,x) * (x + (-1)^n * (2 * n - 1)) for n > 0 with initial value p(0,x) = 1.
Conjecture: E.g.f. of column k >= 0: Sum_{n >= k} T(n,k) * t^n / (n!) = (Sum_{i=0..k} (-1)^(i * (i + 1 ) / 2) * binomial(k,floor((k - i) / 2)) * exp((-1)^i * (2 * i + 1) * t)) * (-1)^(k * (k - 1) / 2) / (4^k * (k!)), i.e., T(n,k) = (Sum_{i=0..k} (-1)^(i * (i + 1) / 2) * binomial(k,floor((k - i) / 2)) * ((-1)^i * (2 * i + 1))^n) * (-1)^(k * (k - 1) / 2) / (4^k * (k!)) for 0 <= k <= n.
Conjecture: E.g.f. of column k >= 0: Sum_{n >= k} T(n,k) * t^n / (n!) = exp(t) * (exp(4*t) - 1)^k / (4^k * (k!) * exp(4*t*floor((k+1)/2))), i.e., T(n,k) = (Sum_{i=0..k} (-1)^i * binomial(k,i) *(1 + 4*i - 4*floor((k+1)/2))^n) * (-1)^k / (4^k * (k!)) for 0 <= k <= n. Proved by Burkhard Hackmann and Werner Schulte (distinction of two cases: odd k, even k). - Werner Schulte, Aug 03 2021
Previous Showing 21-27 of 27 results.