A074088
Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(2,3).
Original entry on oeis.org
0, 0, 0, 0, 21, 120, 585, 2508, 10122, 39042, 145974, 532704, 1907451, 6725004, 23407287, 80591148, 274899288, 930128646, 3124838844, 10432356000, 34634029713, 114403303008, 376184538165, 1231890463020, 4018920819606
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=7, nu(3)=20+6q, nu(4)=61+33q+21q^2, nu(5)=182+144q+120q^2+78q^3+18q^4, so the coefficients of q^2 are 0,0,0,0,21,120.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (6,-3,-28,9,54,27).
-
I:=[0,0,21,120,585,2508]; [0,0] cat [n le 6 select I[n] else 6*Self(n-1) -3*Self(n-2) -28*Self(n-3) +9*Self(n-4) +54*Self(n-5) +27*Self(n-6): n in [1..30]]; // G. C. Greubel, May 26 2018
-
b=2; lambda=3; expon=2; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
(* Second program: *)
Join[{0,0},LinearRecurrence[{6,-3,-28,9,54,27},{0,0,21,120,585,2508},40]] (* Harvey P. Dale, Apr 28 2012 *)
-
x='x+O('x^30); concat([0,0,0,0], Vec((21*x^4 -6*x^5 -72*x^6 -54*x^7)/(1-2*x-3*x^2)^3)) \\ G. C. Greubel, May 26 2018
A248811
Triangle read by rows: T(n,k) is the coefficient A_k in the transformation of 1 + x + x^2 + ... + x^n to the polynomial A_k*(x+3)^k for 0 <= k <= n.
Original entry on oeis.org
1, -2, 1, 7, -5, 1, -20, 22, -8, 1, 61, -86, 46, -11, 1, -182, 319, -224, 79, -14, 1, 547, -1139, 991, -461, 121, -17, 1, -1640, 3964, -4112, 2374, -824, 172, -20, 1, 4921, -13532, 16300, -11234, 4846, -1340, 232, -23, 1, -14762, 45517, -62432, 50002, -25772, 8866, -2036, 301, -26, 1, 44287, -151313, 232813, -212438, 127318, -52370, 14974, -2939, 379, -29, 1
Offset: 0
1;
-2, 1;
7, -5, 1;
-20, 22, -8, 1;
61, -86, 46, -11, 1;
-182, 319, -224, 79, -14, 1;
547, -1139, 991, -461, 121, -17, 1;
-1640, 3964, -4112, 2374, -824, 172, -20, 1;
4921, -13532, 16300, -11234, 4846, -1340, 232, -23, 1;
-14762, 45517, -62432, 50002, -25772, 8866, -2036, 301, -26, 1;
44287, -151313, 232813, -212438, 127318, -52370, 14974, -2939, 379, -29, 1;
-
[[(&+[(-3)^(j-k)*Binomial(j,k): j in [0..n]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, May 27 2018
-
T[n_, k_]:= Sum[(-3)^(j-k)*Binomial[j,k], {j,0,n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, May 27 2018 *)
-
for(n=0,20,for(k=0,n,print1(sum(i=0,n,((-3)^(i-k)* binomial(i, k)) ),", ")))
A345035
a(n) = Sum_{k=1..n} (-3)^(floor(n/k) - 1).
Original entry on oeis.org
1, -2, 11, -28, 81, -234, 739, -2216, 6545, -19594, 59139, -177408, 531181, -1593614, 4783799, -14351032, 43044597, -129133854, 387426799, -1162281332, 3486765521, -10460293354, 31381119459, -94143358440, 282429356977, -847288080362, 2541866366171
Offset: 1
-
a[n_] := Sum[(-3)^(Floor[n/k] - 1), {k, 1, n}]; Array[a, 30] (* Amiram Eldar, Jun 06 2021 *)
-
a(n) = sum(k=1, n, (-3)^(n\k-1));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k*(1-x^k)/(1+3*x^k))/(1-x))
A124137
A signed aerated and skewed version of A038137.
Original entry on oeis.org
1, 0, 1, -1, 0, 2, 0, -2, 0, 3, 1, 0, -5, 0, 5, 0, 3, 0, -10, 0, 8, -1, 0, 9, 0, -20, 0, 13, 0, -4, 0, 22, 0, -38, 0, 21, 1, 0, -14, 0, 51, 0, -71, 0, 34, 0, 5, 0, -40, 0, 111, 0, -130, 0, 55, -1, 0, 20, 0, -105, 0, 233, 0, -235, 0, 89
Offset: 0
Triangle begins:
1;
0, 1;
-1, 0, 2;
0, -2, 0, 3;
1, 0, -5, 0, 5;
0, 3, 0, -10, 0, 8;
-1, 0, 9, 0, -20, 0, 13;
0, -4, 0, 22, 0, -38, 0, 21;
1, 0, -14, 0, 51, 0, -71, 0, 34;
0, 5, 0, -40, 0, 111, 0, -130, 0, 55;
-
T[0, 0]:= 1; T[n_, n_]:= Fibonacci[n + 1]; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n - 1, k - 1] + T[n - 2, k - 2] - T[n - 2, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 27 2018 *)
-
{T(n,k) = if(n==0 && k==0, 1, if(k==n, fibonacci(n+1), if(k<0 || nG. C. Greubel, May 27 2018
A072985
Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n >= 2, nu(n) = b*nu(n-1) + lambda*(n-1)_q*nu(n-2) with (b,lambda)=(2,3), where (n)_q = (1+q+...+q^(n-1)) and q is a root of unity.
Original entry on oeis.org
1, 2, 7, 6, 21, 18, 63, 54, 189, 162, 567, 486, 1701, 1458, 5103, 4374, 15309, 13122, 45927, 39366, 137781, 118098, 413343, 354294, 1240029, 1062882, 3720087, 3188646, 11160261, 9565938, 33480783, 28697814, 100442349, 86093442
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
nu(0) = 1;
nu(1) = 2;
nu(2) = 7;
nu(3) = 20 + 6q;
nu(4) = 61 + 33q + 21q^2;
nu(5) = 182 + 144q + 120q^2 + 78q^3 + 18q^4;
nu(6) = 547 + 570q + 585q^2 + 501q^3 + 381q^4 + 162q^5 + 63q^6; ...
The coefficients of the highest power of q give this sequence.
-
[1] cat [(1/6)*(13+(-1)^n)*3^Floor(n/2): n in [1..40]]; // Vincenzo Librandi, Jul 20 2013
-
CoefficientList[Series[-(1 + 2 x + 4 x^2) / (-1 + 3 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 20 2013 *)
Join[{1}, LinearRecurrence[{0, 3}, {2, 7}, 33]] (* Jean-François Alcover, Sep 23 2017 *)
-
x='x+O('x^30); Vec((1+2*x+4*x^2)/(1-3*x^2)) \\ G. C. Greubel, May 26 2018
A268413
a(n) = Sum_{k = 0..n} (-1)^k*14^k.
Original entry on oeis.org
1, -13, 183, -2561, 35855, -501969, 7027567, -98385937, 1377403119, -19283643665, 269971011311, -3779594158353, 52914318216943, -740800455037201, 10371206370520815, -145196889187291409, 2032756448622079727, -28458590280709116177, 398420263929927626479
Offset: 0
Cf. similar sequences of the type Sum_{k=0..n} (-1)^k*m^k:
A059841 (m=1),
A077925 (m=2),
A014983 (m=3),
A014985 (m=4),
A014986 (m=5),
A014987 (m=6),
A014989 (m=7),
A014990 (m=8),
A014991 (m=9),
A014992 (m=10),
A014993 (m=11),
A014994 (m=12),
A015000 (m=13), this sequence (m=14),
A239284 (m=15).
-
I:=[1,-19]; [n le 2 select I[n] else -13*Self(n-1) +14*Self(n-2): n in [1..30]]; // G. C. Greubel, May 26 2018
-
Table[((-1)^n 14^(n + 1) + 1)/15, {n, 0, 18}]
LinearRecurrence[{-13, 14}, {1, -13}, 19]
Table[Sum[(-1)^k*14^k, {k, 0, n}], {n, 0, 18}]
-
x='x+O('x^30); Vec(1/(1 + 13*x - 14*x^2)) \\ G. C. Greubel, May 26 2018
A346083
Triangle, read by rows, defined by recurrence: T(n,k) = T(n-1,k-1) + (-1)^k * (2 * k + 1) * T(n-1,k) for 0 < k < n with initial values T(n,0) = T(n,n) = 1 for n >= 0 and T(i,j) = 0 if j < 0 or j > i.
Original entry on oeis.org
1, 1, 1, 1, -2, 1, 1, 7, 3, 1, 1, -20, 22, -4, 1, 1, 61, 90, 50, 5, 1, 1, -182, 511, -260, 95, -6, 1, 1, 547, 2373, 2331, 595, 161, 7, 1, 1, -1640, 12412, -13944, 7686, -1176, 252, -8, 1, 1, 4921, 60420, 110020, 55230, 20622, 2100, 372, 9, 1, 1, -14762, 307021, -709720, 607090, -171612, 47922, -3480, 525, -10, 1
Offset: 0
The triangle T(n,k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8 9
=============================================================
0 : 1
1 : 1 1
2 : 1 -2 1
3 : 1 7 3 1
4 : 1 -20 22 -4 1
5 : 1 61 90 50 5 1
6 : 1 -182 511 -260 95 -6 1
7 : 1 547 2373 2331 595 161 7 1
8 : 1 -1640 12412 -13944 7686 -1176 252 -8 1
9 : 1 4921 60420 110020 55230 20622 2100 372 9 1
etc.
-
from functools import cache
@cache
def T(n, k):
if k == 0 or k == n: return 1
return T(n-1, k-1) + (-1)**k*(2*k + 1)*T(n-1, k)
for n in range(10):
print([T(n, k) for k in range(n+1)]) # Peter Luschny, Jul 22 2021
Comments