A014991
a(n) = (1 - (-9)^n)/10.
Original entry on oeis.org
1, -8, 73, -656, 5905, -53144, 478297, -4304672, 38742049, -348678440, 3138105961, -28242953648, 254186582833, -2287679245496, 20589113209465, -185302018885184, 1667718169966657, -15009463529699912
Offset: 1
-
I:=[1,-8]; [n le 2 select I[n] else -8*Self(n-1)+9*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012
-
a:=n->sum ((-9)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008
-
((-9)^Range[30]-1)/-10 (* or *) LinearRecurrence[{-8,9},{1,-8},30] (* Harvey P. Dale, Aug 08 2011 *)
CoefficientList[Series[1/((1 - x)*(1 + 9*x)), {x, 0, 30}], x]; (* Vincenzo Librandi, Oct 22 2012 *)
-
for(n=1,30, print1((1-(-9)^n)/10, ", ")) \\ G. C. Greubel, May 26 2018
-
[gaussian_binomial(n,1,-9) for n in range(1,19)] # Zerinvary Lajos, May 28 2009
A014993
a(n) = (1 - (-11)^n)/12.
Original entry on oeis.org
1, -10, 111, -1220, 13421, -147630, 1623931, -17863240, 196495641, -2161452050, 23775972551, -261535698060, 2876892678661, -31645819465270, 348104014117971, -3829144155297680, 42120585708274481
Offset: 1
Cf.
A077925,
A014983,
A014985,
A014986,
A014987,
A014989,
A014990,
A014991,
A014992,
A014994. -
Zerinvary Lajos, Dec 16 2008
-
I:=[1, -10]; [n le 2 select I[n] else -10*Self(n-1) +11*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012
-
a:=n->sum ((-11)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008
-
LinearRecurrence[{-10, 11}, {1, -10}, 40] (* Vincenzo Librandi, Oct 22 2012 *)
-
for(n=1,30, print1((1-(-11)^n)/12, ", ")) \\ G. C. Greubel, May 26 2018
-
[gaussian_binomial(n,1,-11) for n in range(1,18)] # Zerinvary Lajos, May 28 2009
A015000
q-integers for q=-13.
Original entry on oeis.org
1, -12, 157, -2040, 26521, -344772, 4482037, -58266480, 757464241, -9847035132, 128011456717, -1664148937320, 21633936185161, -281241170407092, 3656135215292197, -47529757798798560, 617886851384381281
Offset: 1
-
I:=[1,-12]; [n le 2 select I[n] else -12*Self(n-1)+13*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012
-
a:=n->sum ((-13)^j, j=0..n-1): seq(a(n), n=0..20); # Zerinvary Lajos, Dec 16 2008
-
QBinomial[Range[20],1,-13] (* Harvey P. Dale, May 02 2012 *)
LinearRecurrence[{-12, 13}, {1, -12}, 30] (* Vincenzo Librandi, Oct 22 2012 *)
-
for(n=1, 30, print1((1-(-13)^n)/14, ", ")) \\ G. C. Greubel, May 26 2018
-
[gaussian_binomial(n,1,-13) for n in range(1,18)] # Zerinvary Lajos, May 28 2009
A179897
a(n) = (n^(2*n+1) + 1) / (n+1).
Original entry on oeis.org
1, 1, 11, 547, 52429, 8138021, 1865813431, 593445188743, 250199979298361, 135085171767299209, 90909090909090909091, 74619186937936447687211, 73381705110822317661638341, 85180949465178001182799643437, 115244915978498073437814463065839, 179766618030828831251710653305053711
Offset: 0
Martin Saturka (martin(AT)saturka.net), Jul 31 2010
For n = 2, a(2) = 11 which is the arithmetic mean of {1/2, 1/2, 2^5} = 33 / 3 = 11. The geometric mean is 8^(1/3) = 2, i.e. both are integral.
-
a(n) = (n^(2*n + 1) + 1)/(n + 1) \\ Andrew Howroyd, May 03 2023
-
[(n**(2*n+1)+1)//(n+1) for n in range(1,11)]
Edited, a(0)=1 prepended and more terms from
Andrew Howroyd, May 03 2023
A268413
a(n) = Sum_{k = 0..n} (-1)^k*14^k.
Original entry on oeis.org
1, -13, 183, -2561, 35855, -501969, 7027567, -98385937, 1377403119, -19283643665, 269971011311, -3779594158353, 52914318216943, -740800455037201, 10371206370520815, -145196889187291409, 2032756448622079727, -28458590280709116177, 398420263929927626479
Offset: 0
Cf. similar sequences of the type Sum_{k=0..n} (-1)^k*m^k:
A059841 (m=1),
A077925 (m=2),
A014983 (m=3),
A014985 (m=4),
A014986 (m=5),
A014987 (m=6),
A014989 (m=7),
A014990 (m=8),
A014991 (m=9),
A014992 (m=10),
A014993 (m=11),
A014994 (m=12),
A015000 (m=13), this sequence (m=14),
A239284 (m=15).
-
I:=[1,-19]; [n le 2 select I[n] else -13*Self(n-1) +14*Self(n-2): n in [1..30]]; // G. C. Greubel, May 26 2018
-
Table[((-1)^n 14^(n + 1) + 1)/15, {n, 0, 18}]
LinearRecurrence[{-13, 14}, {1, -13}, 19]
Table[Sum[(-1)^k*14^k, {k, 0, n}], {n, 0, 18}]
-
x='x+O('x^30); Vec(1/(1 + 13*x - 14*x^2)) \\ G. C. Greubel, May 26 2018
Comments