cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A014983 a(n) = (1 - (-3)^n)/4.

Original entry on oeis.org

0, 1, -2, 7, -20, 61, -182, 547, -1640, 4921, -14762, 44287, -132860, 398581, -1195742, 3587227, -10761680, 32285041, -96855122, 290565367, -871696100, 2615088301, -7845264902, 23535794707, -70607384120, 211822152361, -635466457082, 1906399371247
Offset: 0

Views

Author

Keywords

Comments

q-integers for q=-3.
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=(-1)^n*charpoly(A,0). - Milan Janjic, Jan 27 2010
Pisano period lengths: 1, 2, 1, 4, 4, 2, 3, 8, 1, 4, 10, 4, 6, 6, 4, 16, 16, 2, 9, 4, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    [(1-(-3)^n)/4: n in [0..30]]; // G. C. Greubel, May 26 2018
  • Maple
    a:=n->sum ((-3)^j, j=0..n): seq(a(n), n=-1..25); # Zerinvary Lajos, Dec 16 2008
  • Mathematica
    nn = 25; CoefficientList[Series[x/((1 - x)*(1 + 3*x)), {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *)
    Table[(1 - (-3)^n)/4, {n, 0, 27}] (* Michael De Vlieger, Nov 23 2016 *)
  • PARI
    a(n)=(1-(-3)^n)/4
    
  • Sage
    [gaussian_binomial(n,1,-3) for n in range(0,27)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = a(n-1) + (-3)^(n-1).
G.f.: x/((1-x)*(1+3*x)).
a(n) = -(-1)^n*A015518(n).
a(n) = the (1, 2)-th element of M^n, where M = ((1, 1, 1, -2), (1, 1, -2, 1), (1, -2, 1, 1), (-2, 1, 1, 1)). - Simone Severini, Nov 25 2004
a(0)=0, a(1)=1, a(n) = -2*a(n-1) + 3*a(n-2) for n>1. - Philippe Deléham, Sep 19 2009
From Sergei N. Gladkovskii, Apr 29 2012: (Start)
G.f. A(x) = G(0)/4; G(k) = 1 - 1/(3^(2*k) - 3*x*3^(4*k)/(3*x*3^(2*k) + 1/(1 + 1/(3*3^(2*k) - 3^(3)*x*3^(4*k)/(3^2*x*3^(2*k) - 1/G(k+1)))))); (continued fraction, 3rd kind, 6-step).
E.g.f. E(x) = G(0)/4; G(k) = 1 - 1/(9^k - 3*x*81^k/(3*x*9^k + (2*k+1)/(1 + 1/(3*9^k - 27*x*81^k/(9*x*9^k - (2*k+2)/G(k+1)))))); (continued fraction, 3rd kind, 6-step). (End)
a(n) = A084222(n) - 1. - Filip Zaludek, Nov 19 2016
E.g.f.: sinh(x)*cosh(x)*exp(-x). - Ilya Gutkovskiy, Nov 20 2016

A015121 Triangle of q-binomial coefficients for q=-9.

Original entry on oeis.org

1, 1, 1, 1, -8, 1, 1, 73, 73, 1, 1, -656, 5986, -656, 1, 1, 5905, 484210, 484210, 5905, 1, 1, -53144, 39226915, -352504880, 39226915, -53144, 1, 1, 478297, 3177326971, 257015284435, 257015284435, 3177326971, 478297, 1, 1, -4304672, 257363962948
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals of the former, or rows/columns of the latter, are: A000012 (k=0), A014991 (k=1), A015260 (k=2), A015277 (k=3), A015295 (k=4), A015315 (k=5), A015332 (k=6), A015349 (k=7), A015365 (k=8), A015381 (k=9), A015397 (k=10), A015414 (k=11), A015432 (k=12). - M. F. Hasler, Nov 05 2012

Crossrefs

Cf. analog triangles for other q: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15). - M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 05 2012

Programs

  • Mathematica
    Table[QBinomial[n, k, -9], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
  • PARI
    T015121(n, k, q=-9)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A014986 a(n) = (1 - (-5)^n)/6.

Original entry on oeis.org

1, -4, 21, -104, 521, -2604, 13021, -65104, 325521, -1627604, 8138021, -40690104, 203450521, -1017252604, 5086263021, -25431315104, 127156575521, -635782877604, 3178914388021, -15894571940104, 79472859700521
Offset: 1

Views

Author

Keywords

Comments

q-integers for q = -5.
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Jan 27 2010

Crossrefs

Programs

  • Magma
    I:=[1, -4]; [n le 2 select I[n] else -4*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 19 2012
  • Maple
    a:=n->sum ((-5)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008
  • Mathematica
    LinearRecurrence[{-4,5},{1,-4},30] (* Vincenzo Librandi, Jun 19 2012 *)
  • PARI
    a(n)=(1-(-5)^n)/6 \\ Charles R Greathouse IV, Dec 07 2011
    
  • Sage
    [gaussian_binomial(n,1,-5) for n in range(1,22)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = a(n-1) + q^(n-1) = (q^n - 1) / (q - 1).
G.f.: x/((1-x)*(1+5*x)). - Bruno Berselli, Dec 07 2011
a(n) = -4*a(n-1) + 5*a(n-2). - Vincenzo Librandi, Jun 19 2012
E.g.f.: (exp(x) - exp(-5*x))/6. - G. C. Greubel, May 26 2018

Extensions

Better name from Ralf Stephan, Jul 14 2013

A014990 a(n) = (1 - (-8)^n)/9.

Original entry on oeis.org

1, -7, 57, -455, 3641, -29127, 233017, -1864135, 14913081, -119304647, 954437177, -7635497415, 61083979321, -488671834567, 3909374676537, -31274997412295, 250199979298361, -2001599834386887, 16012798675095097
Offset: 1

Views

Author

Keywords

Comments

q-integers for q=-8.

Crossrefs

Programs

  • Magma
    I:=[1, -7]; [n le 2 select I[n] else -7*Self(n-1) +8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012
    
  • Maple
    a:=n->sum ((-8)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008
  • Mathematica
    QBinomial[Range[20],1,-8] (* or *) LinearRecurrence[{-7,8},{1,-7},20] (* Harvey P. Dale, Dec 19 2011 *)
  • PARI
    a(n)=(1-(-8)^n)/9 \\ Charles R Greathouse IV, Oct 07 2015
  • Sage
    [gaussian_binomial(n,1,-8) for n in range(1,20)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = a(n-1) + q^{(n-1)} = {(q^n - 1) / (q - 1)}
From Philippe Deléham, Feb 13 2007: (Start)
a(1)=1, a(2)=-7, a(n) = -7*a(n-1) + 8*a(n-2) for n > 2.
a(n) = (-1)^(n+1)*A015565(n).
G.f.: x/(1 + 7*x - 8*x^2). (End)
E.g.f.: (exp(x) - exp(-8*x))/9. - G. C. Greubel, May 26 2018

Extensions

Better name from Ralf Stephan, Jul 14 2013

A014992 a(n) = (1 - (-10)^n)/11.

Original entry on oeis.org

1, -9, 91, -909, 9091, -90909, 909091, -9090909, 90909091, -909090909, 9090909091, -90909090909, 909090909091, -9090909090909, 90909090909091, -909090909090909, 9090909090909091, -90909090909090909
Offset: 1

Views

Author

Keywords

Comments

q-integers for q = -10.

Crossrefs

Programs

  • Magma
    I:=[1, -9]; [n le 2 select I[n] else -9*Self(n-1) +10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012
    
  • Maple
    a:=n->sum ((-10)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008
  • Mathematica
    CoefficientList[Series[1/((1 - x)*(1 + 10*x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 22 2012 *)
  • PARI
    for(n=1, 30, print1((1-(-10)^n)/11, ", ")) \\ G. C. Greubel, May 26 2018
  • Sage
    [gaussian_binomial(n,1,-10) for n in range(1,19)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = a(n-1) + q^(n-1) = (q^n - 1) / (q - 1).
G.f.: x/((1 - x)*(1 + 10*x)). - Vincenzo Librandi, Oct 22 2012
a(n) = -9*a(n-1) + 10*a(n-2). - Vincenzo Librandi, Oct 22 2012
a(n) = (-1)^(n+1)*A015585(n). - R. J. Mathar, Oct 26 2015
E.g.f.: (exp(x) - exp(-10*x))/11. - G. C. Greubel, May 26 2018

Extensions

Better name from Ralf Stephan, Jul 14 2013

A014993 a(n) = (1 - (-11)^n)/12.

Original entry on oeis.org

1, -10, 111, -1220, 13421, -147630, 1623931, -17863240, 196495641, -2161452050, 23775972551, -261535698060, 2876892678661, -31645819465270, 348104014117971, -3829144155297680, 42120585708274481
Offset: 1

Views

Author

Keywords

Comments

q-integers for q = -11.

Crossrefs

Programs

  • Magma
    I:=[1, -10]; [n le 2 select I[n] else -10*Self(n-1) +11*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012
    
  • Maple
    a:=n->sum ((-11)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008
  • Mathematica
    LinearRecurrence[{-10, 11}, {1, -10}, 40] (* Vincenzo Librandi, Oct 22 2012 *)
  • PARI
    for(n=1,30, print1((1-(-11)^n)/12, ", ")) \\ G. C. Greubel, May 26 2018
  • Sage
    [gaussian_binomial(n,1,-11) for n in range(1,18)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = a(n-1) + q^{(n-1)} = {(q^n - 1) / (q - 1)}.
G.f.: x/((1 - x)*(1 + 11*x)). - Vincenzo Librandi, Oct 22 2012
a(n) = -10*a(n-1) + 11*a(n-2). - Vincenzo Librandi, Oct 22 2012
E.g.f.: (exp(x) - exp(-11*x))/12. - G. C. Greubel, May 26 2018

Extensions

Better name from Ralf Stephan, Jul 14 2013

A268413 a(n) = Sum_{k = 0..n} (-1)^k*14^k.

Original entry on oeis.org

1, -13, 183, -2561, 35855, -501969, 7027567, -98385937, 1377403119, -19283643665, 269971011311, -3779594158353, 52914318216943, -740800455037201, 10371206370520815, -145196889187291409, 2032756448622079727, -28458590280709116177, 398420263929927626479
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2016

Keywords

Comments

Alternating sum of powers of 14.
More generally, the ordinary generating function for the Sum_{k = 0..n} (-1)^k*m^k is 1/(1 + (m - 1)*x - m*x^2). Also, Sum_{k = 0..n} (-1)^k*m^k = ((-1)^n*m^(n + 1) + 1)/(m + 1).

Crossrefs

Cf. similar sequences of the type Sum_{k=0..n} (-1)^k*m^k: A059841 (m=1), A077925 (m=2), A014983 (m=3), A014985 (m=4), A014986 (m=5), A014987 (m=6), A014989 (m=7), A014990 (m=8), A014991 (m=9), A014992 (m=10), A014993 (m=11), A014994 (m=12), A015000 (m=13), this sequence (m=14), A239284 (m=15).

Programs

  • Magma
    I:=[1,-19]; [n le 2 select I[n] else -13*Self(n-1) +14*Self(n-2): n in [1..30]]; // G. C. Greubel, May 26 2018
  • Mathematica
    Table[((-1)^n 14^(n + 1) + 1)/15, {n, 0, 18}]
    LinearRecurrence[{-13, 14}, {1, -13}, 19]
    Table[Sum[(-1)^k*14^k, {k, 0, n}], {n, 0, 18}]
  • PARI
    x='x+O('x^30); Vec(1/(1 + 13*x - 14*x^2)) \\ G. C. Greubel, May 26 2018
    

Formula

G.f.: 1/(1 + 13*x - 14*x^2).
a(n) = ((-1)^n*14^(n + 1) + 1)/15.
a(n) = 1 - 14*a(n - 1) for n>0 and a(0)=1.
a(n) = Sum_{k = 0..n} A033999(k)*A001023(k).
Lim_{n -> infinity} a(n)/a(n + 1) = - 1/14.
Showing 1-7 of 7 results.