cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A014983 a(n) = (1 - (-3)^n)/4.

Original entry on oeis.org

0, 1, -2, 7, -20, 61, -182, 547, -1640, 4921, -14762, 44287, -132860, 398581, -1195742, 3587227, -10761680, 32285041, -96855122, 290565367, -871696100, 2615088301, -7845264902, 23535794707, -70607384120, 211822152361, -635466457082, 1906399371247
Offset: 0

Views

Author

Keywords

Comments

q-integers for q=-3.
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=(-1)^n*charpoly(A,0). - Milan Janjic, Jan 27 2010
Pisano period lengths: 1, 2, 1, 4, 4, 2, 3, 8, 1, 4, 10, 4, 6, 6, 4, 16, 16, 2, 9, 4, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    [(1-(-3)^n)/4: n in [0..30]]; // G. C. Greubel, May 26 2018
  • Maple
    a:=n->sum ((-3)^j, j=0..n): seq(a(n), n=-1..25); # Zerinvary Lajos, Dec 16 2008
  • Mathematica
    nn = 25; CoefficientList[Series[x/((1 - x)*(1 + 3*x)), {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *)
    Table[(1 - (-3)^n)/4, {n, 0, 27}] (* Michael De Vlieger, Nov 23 2016 *)
  • PARI
    a(n)=(1-(-3)^n)/4
    
  • Sage
    [gaussian_binomial(n,1,-3) for n in range(0,27)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = a(n-1) + (-3)^(n-1).
G.f.: x/((1-x)*(1+3*x)).
a(n) = -(-1)^n*A015518(n).
a(n) = the (1, 2)-th element of M^n, where M = ((1, 1, 1, -2), (1, 1, -2, 1), (1, -2, 1, 1), (-2, 1, 1, 1)). - Simone Severini, Nov 25 2004
a(0)=0, a(1)=1, a(n) = -2*a(n-1) + 3*a(n-2) for n>1. - Philippe Deléham, Sep 19 2009
From Sergei N. Gladkovskii, Apr 29 2012: (Start)
G.f. A(x) = G(0)/4; G(k) = 1 - 1/(3^(2*k) - 3*x*3^(4*k)/(3*x*3^(2*k) + 1/(1 + 1/(3*3^(2*k) - 3^(3)*x*3^(4*k)/(3^2*x*3^(2*k) - 1/G(k+1)))))); (continued fraction, 3rd kind, 6-step).
E.g.f. E(x) = G(0)/4; G(k) = 1 - 1/(9^k - 3*x*81^k/(3*x*9^k + (2*k+1)/(1 + 1/(3*9^k - 27*x*81^k/(9*x*9^k - (2*k+2)/G(k+1)))))); (continued fraction, 3rd kind, 6-step). (End)
a(n) = A084222(n) - 1. - Filip Zaludek, Nov 19 2016
E.g.f.: sinh(x)*cosh(x)*exp(-x). - Ilya Gutkovskiy, Nov 20 2016

A015565 a(n) = 7*a(n-1) + 8*a(n-2), a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 7, 57, 455, 3641, 29127, 233017, 1864135, 14913081, 119304647, 954437177, 7635497415, 61083979321, 488671834567, 3909374676537, 31274997412295, 250199979298361, 2001599834386887, 16012798675095097, 128102389400760775, 1024819115206086201, 8198552921648689607
Offset: 0

Views

Author

Keywords

Comments

A linear 2nd order recurrence. A Jacobsthal number sequence.
Binomial transform of A053573 (preceded by zero). - Paul Barry, Apr 09 2003
Second binomial transform of A080424. Binomial transform of A053573, with leading zero. Binomial transform is 0,1,9,81,729,....(9^n - 0^n)/9. Second binomial transform is 0,1,11,111,1111,... (A002275: repunits). - Paul Barry, Mar 14 2004
Number of walks of length n between any two distinct nodes of the complete graph K_9. Example: a(2)=7 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHI are: ACB, ADB, AEB, AFB, AGB, AHB and AIB. - Emeric Deutsch, Apr 01 2004
Unsigned version of A014990. - Philippe Deléham, Feb 13 2007
The ratio a(n+1)/a(n) converges to 8 as n approaches infinity. - Felix P. Muga II, Mar 09 2014

Examples

			G.f. = x + 7*x^2 + 57*x^3 + 455*x^4 + 3641*x^5 + 29127*x^6 + 233017*x^7 + ...
		

Crossrefs

Programs

Formula

From Paul Barry, Apr 09 2003: (Start)
a(n) = (8^n - (-1)^n)/9.
a(n) = J(3*n)/3 = A001045(3*n)/3. (End)
From Emeric Deutsch, Apr 01 2004: (Start)
a(n) = 8^(n-1) - a(n-1).
G.f.: x/(1-7*x-8*x^2). (End)
a(n) = Sum_{k = 0..n} A106566(n,k)*A099322(k). - Philippe Deléham, Oct 30 2008
a(n) = round(8^n/9). - Mircea Merca, Dec 28 2010
From Peter Bala, May 31 2024: (Start)
G.f: A(x) = x/(1 - x^2) o x/(1 - x^2), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A054878.
The black diamond product A(x) o A(x) is the g.f. for the number of walks of length n between any two distinct nodes of the complete graph K_81.
Row 8 of A062160. (End)
E.g.f.: exp(-x)*(exp(9*x) - 1)/9. - Elmo R. Oliveira, Aug 17 2024

A015118 Triangle of q-binomial coefficients for q=-8.

Original entry on oeis.org

1, 1, 1, 1, -7, 1, 1, 57, 57, 1, 1, -455, 3705, -455, 1, 1, 3641, 236665, 236665, 3641, 1, 1, -29127, 15150201, -120935815, 15150201, -29127, 1, 1, 233017, 969583737, 61934287481, 61934287481, 969583737, 233017, 1, 1, -1864135, 62053592185
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals of the former, or rows/columns of the latter, are: A000012 (k=0), A014990 (k=1), A015259 (k=2), A015276 (k=3), A015294 (k=4), A015313 (k=5), A015331 (k=6), A015347 (k=7), A015364 (k=8), A015380 (k=9), A015394 (k=10), A015413 (k=11), A015431 (k=12). - M. F. Hasler, Nov 04 2012

Crossrefs

Cf. analog triangles for negative q=-2,...,-15: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15). - M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 05 2012

Programs

  • Mathematica
    Table[QBinomial[n, k, -8], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
  • PARI
    T015118(n, k, q=-8)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A014986 a(n) = (1 - (-5)^n)/6.

Original entry on oeis.org

1, -4, 21, -104, 521, -2604, 13021, -65104, 325521, -1627604, 8138021, -40690104, 203450521, -1017252604, 5086263021, -25431315104, 127156575521, -635782877604, 3178914388021, -15894571940104, 79472859700521
Offset: 1

Views

Author

Keywords

Comments

q-integers for q = -5.
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Jan 27 2010

Crossrefs

Programs

  • Magma
    I:=[1, -4]; [n le 2 select I[n] else -4*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 19 2012
  • Maple
    a:=n->sum ((-5)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008
  • Mathematica
    LinearRecurrence[{-4,5},{1,-4},30] (* Vincenzo Librandi, Jun 19 2012 *)
  • PARI
    a(n)=(1-(-5)^n)/6 \\ Charles R Greathouse IV, Dec 07 2011
    
  • Sage
    [gaussian_binomial(n,1,-5) for n in range(1,22)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = a(n-1) + q^(n-1) = (q^n - 1) / (q - 1).
G.f.: x/((1-x)*(1+5*x)). - Bruno Berselli, Dec 07 2011
a(n) = -4*a(n-1) + 5*a(n-2). - Vincenzo Librandi, Jun 19 2012
E.g.f.: (exp(x) - exp(-5*x))/6. - G. C. Greubel, May 26 2018

Extensions

Better name from Ralf Stephan, Jul 14 2013

A014989 a(n) = (1 - (-7)^n)/8.

Original entry on oeis.org

1, -6, 43, -300, 2101, -14706, 102943, -720600, 5044201, -35309406, 247165843, -1730160900, 12111126301, -84777884106, 593445188743, -4154116321200, 29078814248401, -203551699738806, 1424861898171643, -9974033287201500
Offset: 1

Views

Author

Keywords

Comments

q-integers for q = -7.

Crossrefs

Programs

  • Magma
    I:=[1,-6]; [n le 2 select I[n] else -6*Self(n-1)+7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012
    
  • Maple
    a:=n->sum ((-7)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008
  • Mathematica
    LinearRecurrence[{-6, 7}, {1, -6}, 30] (* Vincenzo Librandi, Oct 22 2012 *)
  • PARI
    x='x+O('x^30); Vec(x/((1-x)*(1+7*x))) \\ G. C. Greubel, May 26 2018
  • Sage
    [gaussian_binomial(n,1,-7) for n in range(1,21)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = a(n-1) + q^(n-1) = (q^n - 1) / (q - 1).
a(n) = -6*a(n-1) + 7*a(n-2). - Vincenzo Librandi, Oct 22 2012
From G. C. Greubel, May 26 2018: (Start)
G.f.: x/((1-x)*(1+7*x)).
E.g.f.: (exp(x) - exp(-7*x))/8. (End)

Extensions

Better name from Ralf Stephan, Jul 14 2013

A014992 a(n) = (1 - (-10)^n)/11.

Original entry on oeis.org

1, -9, 91, -909, 9091, -90909, 909091, -9090909, 90909091, -909090909, 9090909091, -90909090909, 909090909091, -9090909090909, 90909090909091, -909090909090909, 9090909090909091, -90909090909090909
Offset: 1

Views

Author

Keywords

Comments

q-integers for q = -10.

Crossrefs

Programs

  • Magma
    I:=[1, -9]; [n le 2 select I[n] else -9*Self(n-1) +10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012
    
  • Maple
    a:=n->sum ((-10)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008
  • Mathematica
    CoefficientList[Series[1/((1 - x)*(1 + 10*x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 22 2012 *)
  • PARI
    for(n=1, 30, print1((1-(-10)^n)/11, ", ")) \\ G. C. Greubel, May 26 2018
  • Sage
    [gaussian_binomial(n,1,-10) for n in range(1,19)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = a(n-1) + q^(n-1) = (q^n - 1) / (q - 1).
G.f.: x/((1 - x)*(1 + 10*x)). - Vincenzo Librandi, Oct 22 2012
a(n) = -9*a(n-1) + 10*a(n-2). - Vincenzo Librandi, Oct 22 2012
a(n) = (-1)^(n+1)*A015585(n). - R. J. Mathar, Oct 26 2015
E.g.f.: (exp(x) - exp(-10*x))/11. - G. C. Greubel, May 26 2018

Extensions

Better name from Ralf Stephan, Jul 14 2013

A014993 a(n) = (1 - (-11)^n)/12.

Original entry on oeis.org

1, -10, 111, -1220, 13421, -147630, 1623931, -17863240, 196495641, -2161452050, 23775972551, -261535698060, 2876892678661, -31645819465270, 348104014117971, -3829144155297680, 42120585708274481
Offset: 1

Views

Author

Keywords

Comments

q-integers for q = -11.

Crossrefs

Programs

  • Magma
    I:=[1, -10]; [n le 2 select I[n] else -10*Self(n-1) +11*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012
    
  • Maple
    a:=n->sum ((-11)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008
  • Mathematica
    LinearRecurrence[{-10, 11}, {1, -10}, 40] (* Vincenzo Librandi, Oct 22 2012 *)
  • PARI
    for(n=1,30, print1((1-(-11)^n)/12, ", ")) \\ G. C. Greubel, May 26 2018
  • Sage
    [gaussian_binomial(n,1,-11) for n in range(1,18)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = a(n-1) + q^{(n-1)} = {(q^n - 1) / (q - 1)}.
G.f.: x/((1 - x)*(1 + 11*x)). - Vincenzo Librandi, Oct 22 2012
a(n) = -10*a(n-1) + 11*a(n-2). - Vincenzo Librandi, Oct 22 2012
E.g.f.: (exp(x) - exp(-11*x))/12. - G. C. Greubel, May 26 2018

Extensions

Better name from Ralf Stephan, Jul 14 2013

A268413 a(n) = Sum_{k = 0..n} (-1)^k*14^k.

Original entry on oeis.org

1, -13, 183, -2561, 35855, -501969, 7027567, -98385937, 1377403119, -19283643665, 269971011311, -3779594158353, 52914318216943, -740800455037201, 10371206370520815, -145196889187291409, 2032756448622079727, -28458590280709116177, 398420263929927626479
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2016

Keywords

Comments

Alternating sum of powers of 14.
More generally, the ordinary generating function for the Sum_{k = 0..n} (-1)^k*m^k is 1/(1 + (m - 1)*x - m*x^2). Also, Sum_{k = 0..n} (-1)^k*m^k = ((-1)^n*m^(n + 1) + 1)/(m + 1).

Crossrefs

Cf. similar sequences of the type Sum_{k=0..n} (-1)^k*m^k: A059841 (m=1), A077925 (m=2), A014983 (m=3), A014985 (m=4), A014986 (m=5), A014987 (m=6), A014989 (m=7), A014990 (m=8), A014991 (m=9), A014992 (m=10), A014993 (m=11), A014994 (m=12), A015000 (m=13), this sequence (m=14), A239284 (m=15).

Programs

  • Magma
    I:=[1,-19]; [n le 2 select I[n] else -13*Self(n-1) +14*Self(n-2): n in [1..30]]; // G. C. Greubel, May 26 2018
  • Mathematica
    Table[((-1)^n 14^(n + 1) + 1)/15, {n, 0, 18}]
    LinearRecurrence[{-13, 14}, {1, -13}, 19]
    Table[Sum[(-1)^k*14^k, {k, 0, n}], {n, 0, 18}]
  • PARI
    x='x+O('x^30); Vec(1/(1 + 13*x - 14*x^2)) \\ G. C. Greubel, May 26 2018
    

Formula

G.f.: 1/(1 + 13*x - 14*x^2).
a(n) = ((-1)^n*14^(n + 1) + 1)/15.
a(n) = 1 - 14*a(n - 1) for n>0 and a(0)=1.
a(n) = Sum_{k = 0..n} A033999(k)*A001023(k).
Lim_{n -> infinity} a(n)/a(n + 1) = - 1/14.

A328824 Numerators of A113405(-n) (see the comment for details).

Original entry on oeis.org

0, 1, 1, 1, -7, -7, -7, 57, 57, 57, -455, -455, -455, 3641, 3641, 3641, -29127, -29127, -29127, 233017, 233017, 233017, -1864135, -1864135, -1864135, 14913081, 14913081, 14913081, -119304647, -119304647, -119304647
Offset: 0

Views

Author

Paul Curtz, Oct 28 2019

Keywords

Comments

Let A(n) = (2^n + (-1)^(n+1) - 2*sqrt(3)*sin((Pi*n)/3))/9. Then A(n) = A113405(n) and a(n) = numerator(A(-n)).

Crossrefs

Programs

  • Maple
    gf := x / ((1 - x)*(1 + 2*x)*(1 - 2*x + 4*x^2)): ser := series(gf, x, 36):
    seq(coeff(ser,x,n),n=0..30); # Peter Luschny, Nov 11 2019
  • Mathematica
    LinearRecurrence[{1,0,-8,8},{0,1,1,1},50] (* Paolo Xausa, Nov 13 2023 *)
  • PARI
    concat(0, Vec(x / ((1 - x)*(1 + 2*x)*(1 - 2*x + 4*x^2)) + O(x^40))) \\ Colin Barker, Nov 11 2019

Formula

From Colin Barker, Nov 11 2019: (Start)
G.f.: x / ((1 - x)*(1 + 2*x)*(1 - 2*x + 4*x^2)).
a(n) = a(n-1) - 8*a(n-3) + 8*a(n-4) for n>3. (End)
Showing 1-9 of 9 results.