A082310 Duplicate of A015565.
0, 1, 7, 57, 455, 3641, 29127, 233017, 1864135, 14913081, 119304647, 954437177
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a002275 = (`div` 9) . subtract 1 . (10 ^) a002275_list = iterate ((+ 1) . (* 10)) 0 -- Reinhard Zumkeller, Jul 05 2013, Feb 05 2012
[(10^n-1)/9: n in [0..25]]; // Vincenzo Librandi, Nov 06 2014
seq((10^k - 1)/9, k=0..30); # Wesley Ivan Hurt, Sep 28 2013
Table[(10^n - 1)/9, {n, 0, 19}] (* Alonso del Arte, Nov 15 2011 *) Join[{0},Table[FromDigits[PadRight[{},n,1]],{n,20}]] (* Harvey P. Dale, Mar 04 2012 *)
a[0]:0$ a[1]:1$ a[n]:=11*a[n-1]-10*a[n-2]$ A002275(n):=a[n]$ makelist(A002275(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
a(n)=(10^n-1)/9; \\ Michael B. Porter, Oct 26 2009
my(x='x+O('x^30)); concat(0, Vec(x/((1-10*x)*(1-x)))) \\ Altug Alkan, Apr 10 2016
print([(10**n-1)//9 for n in range(100)]) # Michael S. Branicky, Apr 30 2022
[lucas_number1(n, 11, 10) for n in range(21)] # Zerinvary Lajos, Apr 27 2009
Triangle begins: 1; 0, 1; 0, 1, 1; 0, 2, 2, 1; 0, 5, 5, 3, 1; 0, 14, 14, 9, 4, 1; 0, 42, 42, 28, 14, 5, 1; 0, 132, 132, 90, 48, 20, 6, 1; From _Paul Barry_, Sep 28 2009: (Start) Production array is 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 (End)
A106566:= func< n,k | n eq 0 select 1 else (k/n)*Binomial(2*n-k-1, n-k) >; [A106566(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 06 2021
A106566 := proc(n,k) if n = 0 then 1; elif k < 0 or k > n then 0; else binomial(2*n-k-1,n-k)*k/n ; end if; end proc: # R. J. Mathar, Mar 01 2015
T[n_, k_] := Binomial[2n-k-1, n-k]*k/n; T[0, 0] = 1; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2017 *) (* The function RiordanArray is defined in A256893. *) RiordanArray[1&, #(1-Sqrt[1-4#])/(2#)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
{T(n, k) = if( k<=0 || k>n, n==0 && k==0, binomial(2*n - k, n) * k/(2*n - k))}; /* Michael Somos, Oct 01 2022 */
def A106566(n, k): return 1 if (n==0) else (k/n)*binomial(2*n-k-1, n-k) flatten([[A106566(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 06 2021
Rows begin: 1; 0, 1; 0, -1, 1; 0, 0, -2, 1; 0, 0, 1, -3, 1; 0, 0, 0, 3, -4, 1; 0, 0, 0, -1, 6, -5, 1; 0, 0, 0, 0, -4, 10, -6, 1; 0, 0, 0, 0, 1, -10, 15, -7, 1; 0, 0, 0, 0, 0, 5, -20, 21, -8, 1; 0, 0, 0, 0, 0, -1, 15, -35, 28, -9, 1; From _Paul Barry_, Sep 28 2009: (Start) Production array is 0, 1, 0, -1, 1, 0, -1, -1, 1, 0, -2, -1, -1, 1, 0, -5, -2, -1, -1, 1, 0, -14, -5, -2, -1, -1, 1, 0, -42, -14, -5, -2, -1, -1, 1, 0, -132, -42, -14, -5, -2, -1, -1, 1, 0, -429, -132, -42, -14, -5, -2, -1, -1, 1 (End)
/* As triangle */ [[(-1)^(n-k)*Binomial(k, n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jan 14 2016
(* The function RiordanArray is defined in A256893. *) RiordanArray[1&, #(1-#)&, 13] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
[Round(2^n/9): n in [0..40]]; // Vincenzo Librandi, Aug 11 2011
A010892 := proc(n) op((n mod 6)+1,[1,1,0,-1,-1,0]) ; end proc: A113405 := proc(n) (2^n-(-1)^n)/9 -A010892(n-1)/3; end proc: # R. J. Mathar, Dec 17 2010
CoefficientList[Series[x^3/(1-2x+x^3-2x^4),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,-1,2},{0,0,0,1},40] (* Harvey P. Dale, Apr 30 2011 *)
a(n)=2^n\/9 \\ Charles R Greathouse IV, Jun 05 2011
def A113405(n): return ((1<Chai Wah Wu, Apr 17 2025
[2*8^n/3+(-1)^n/3 : n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
f[n_] := (2*8^n + (-1)^n)/3; Array[f, 25, 0] (* Robert G. Wilson v, Aug 13 2011 *)
x='x+O('x^30); Vec((1-2*x)/((1+x)*(1-8*x))) \\ G. C. Greubel, Sep 16 2018
819 in binary is 1100110011. The runs of 0's and 1's are (11)(00)(11)(00)(11). Each run (alternating 1's and 0's) is the same length. So 819 is in the sequence.
import Data.Set (singleton, deleteFindMin, insert) a140690 n = a140690_list !! (n-1) a140690_list = f $ singleton (1, 1, 2) where f s | k == 1 = m : f (insert (2*b-1, 1, 2*b) $ insert (b*m, k+1, b) s') | even k = m : f (insert (b*m+b-1, k+1, b) s') | otherwise = m : f (insert (b*m, k+1, b) s') where ((m, k, b), s') = deleteFindMin s -- Reinhard Zumkeller, Feb 21 2014
Runs := proc (L) local j, r, i, k: j := 1: r[j] := L[1]: for i from 2 to nops(L) do if L[i] = L[i-1] then r[j] := r[j], L[i] else j := j+1: r[j] := L[i] end if end do: [seq([r[k]], k = 1 .. j)] end proc: RunLengths := proc (L) map(nops, Runs(L)) end proc: c := proc (n) ListTools:-Reverse(convert(n, base, 2)): RunLengths(%) end proc: A := {}: for n to 62000 do if nops(convert(c(n), set)) = 1 then A := `union`(A, {n}) else end if end do: A; # most of the Maple program is due to W. Edwin Clark. - Emeric Deutsch, Jan 25 2018
Select[Range[62000],Length[Union[Length/@Split[IntegerDigits[#,2]]]]==1&] (* Harvey P. Dale, Mar 22 2012 *)
[4*8^n/3-(-1)^n/3: n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
f[n_] := (4*8^n - (-1)^n)/3; Array[f, 20, 0] (* Robert G. Wilson v, Aug 13 2011 *) LinearRecurrence[{7,8},{1,11},20] (* Harvey P. Dale, May 06 2012 *)
vector(30, n, n--; (4*8^n -(-1)^n)/3) \\ G. C. Greubel, Sep 16 2018
I:=[1, -7]; [n le 2 select I[n] else -7*Self(n-1) +8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012
a:=n->sum ((-8)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008
QBinomial[Range[20],1,-8] (* or *) LinearRecurrence[{-7,8},{1,-7},20] (* Harvey P. Dale, Dec 19 2011 *)
a(n)=(1-(-8)^n)/9 \\ Charles R Greathouse IV, Oct 07 2015
[gaussian_binomial(n,1,-8) for n in range(1,20)] # Zerinvary Lajos, May 28 2009
[Round(10^n/11): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
k=0;lst={k};Do[k=10^n-k;AppendTo[lst, k], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *) LinearRecurrence[{9,10},{0,1},30] (* Harvey P. Dale, Aug 08 2014 *)
a(n)=10^n\/11 \\ Charles R Greathouse IV, Jun 24 2011
[lucas_number1(n,9,-10) for n in range(0, 19)] # Zerinvary Lajos, Apr 26 2009
[abs(gaussian_binomial(n,1,-10)) for n in range(0,19)] # Zerinvary Lajos, May 28 2009
Comments