cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A015108 Carlitz-Riordan q-Catalan numbers (recurrence version) for q=-11.

Original entry on oeis.org

1, 1, -10, -1231, 1636130, 23957879562, -3858392581773300, -6835385537899011365535, 133202313157282627679850238250, 28553099061411464607955930776882965774
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x - 10*x^2 - 1231*x^3 + 1636130*x^4 + 23957879562*x^5 + ...
		

Crossrefs

Cf. A227543.
Cf. this sequence (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), A090192 (q=-1), A000108 (q=1), A015083 (q=2), A015084 (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=11 of A290789.

Programs

  • Mathematica
    m = 10; ContinuedFractionK[If[i == 1, 1, -(-11)^(i-2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
  • Ruby
    def A(q, n)
      ary = [1]
      (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
      ary
    end
    def A015108(n)
      A(-11, n)
    end # Seiichi Manyama, Dec 25 2016

Formula

a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=-11 and a(0)=1.
G.f. satisfies: A(x) = 1 / (1 - x*A(-11*x)) = 1/(1-x/(1+11*x/(1-11^2*x/(1+11^3*x/(1-...))))) (continued fraction). - Seiichi Manyama, Dec 28 2016

Extensions

Offset changed to 0 by Seiichi Manyama, Dec 25 2016

A290759 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - x/(1 - k*x/(1 - k^2*x/(1 - k^3*x/(1 - k^4*x/(1 - ...)))))).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 17, 14, 1, 1, 1, 5, 43, 171, 42, 1, 1, 1, 6, 89, 1252, 3113, 132, 1, 1, 1, 7, 161, 5885, 104098, 106419, 429, 1, 1, 1, 8, 265, 20466, 1518897, 25511272, 7035649, 1430, 1, 1, 1, 9, 407, 57799, 12833546, 1558435125, 18649337311, 915028347, 4862, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 09 2017

Keywords

Comments

This is the transpose of the array in A090182.

Examples

			G.f. of column k: A_k(x) = 1 + x + (k + 1)*x^2 + (k^3 + k^2 + 2*k + 1)*x^3 + (k^6 + k^5 + 2*k^4 + 3*k^3 + 3*k^2 + 3*k + 1)*x^4 + ...
Square array begins:
  1,   1,     1,       1,        1,         1,  ...
  1,   1,     1,       1,        1,         1,  ...
  1,   2,     3,       4,        5,         6,  ...
  1,   5,    17,      43,       89,       161,  ...
  1,  14,   171,    1252,     5885,     20466,  ...
  1,  42,  3113,  104098,  1518897,  12833546,  ...
		

Crossrefs

Main diagonal gives A290777.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          A(j, k)*A(n-j-1, k)*k^j, j=0..n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Aug 10 2017
  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 - x/(1 + ContinuedFractionK[-k^i x, 1, {i, 1, n}])), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def A(n, k): return 1 if n==0 else sum(A(j, k)*A(n - j - 1, k)*k**j for j in range(n))
    for n in range(13): print([A(k, n - k) for k in range(n + 1)]) # Indranil Ghosh, Aug 10 2017, after Maple code

Formula

G.f. of column k: 1/(1 - x/(1 - k*x/(1 - k^2*x/(1 - k^3*x/(1 - k^4*x/(1 - ...)))))), a continued fraction.

A090182 Triangle T(n,k), 0 <= k <= n, composed of k-Catalan numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 14, 17, 4, 1, 1, 1, 42, 171, 43, 5, 1, 1, 1, 132, 3113, 1252, 89, 6, 1, 1, 1, 429, 106419, 104098, 5885, 161, 7, 1, 1, 1, 1430, 7035649, 25511272, 1518897, 20466, 265, 8, 1, 1, 1, 4862, 915028347, 18649337311, 1558435125, 12833546, 57799, 407, 9, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 20 2004, Oct 16 2008

Keywords

Examples

			Triangle begins:
  1;
  1,    1;
  1,    1,       1;
  1,    2,       1,        1;
  1,    5,       3,        1,       1;
  1,   14,      17,        4,       1,     1;
  1,   42,     171,       43,       5,     1,   1;
  1,  132,    3113,     1252,      89,     6,   1, 1;
  1,  429,  106419,   104098,    5885,   161,   7, 1, 1;
  1, 1430, 7035649, 25511272, 1518897, 20466, 265, 8, 1, 1;
This sequence formatted as a square array:
  1, 1, 1,   1,     1,        1,           1,               1, ...
  1, 1, 2,   5,    14,       42,         132,             429, ...
  1, 1, 3,  17,   171,     3113,      106419,         7035649, ...
  1, 1, 4,  43,  1252,   104098,    25511272,     18649337311, ...
  1, 1, 5,  89,  5885,  1518897,  1558435125,   6386478643785, ...
  1, 1, 6, 161, 20466, 12833546, 40130703276, 627122621447281, ...
		

Crossrefs

The column sequences (without leading zeros) are A000012, A000108 (Catalan), A015083, A015084, A015085, A015086, A015089, A015091, A015092, A015093, A015095, A015096 for k=0..11.
T(2n,n) gives A290777.
Cf. A290759.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(k=n, 1, add(
          T(j+k, k)*T(n-j-1, k)*k^j, j=0..n-k-1))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Aug 10 2017
  • Mathematica
    nmax = 10; col[k_] := col[k] = Module[{A}, A[] = 0; Do[A[x] = Normal[1/(1 - x*A[k*x]) + O[x]^(nmax-k+1)], {nmax-k+1}]; CoefficientList[A[x], x]];
    T[n_, k_] := col[k][[n-k+1]];
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 05 2019, using g.f. given for column sequences *)

A125791 a(n) = 2^(n*(n-1)*(n-2)/6) for n>=1.

Original entry on oeis.org

1, 1, 2, 16, 1024, 1048576, 34359738368, 72057594037927936, 19342813113834066795298816, 1329227995784915872903807060280344576, 46768052394588893382517914646921056628989841375232
Offset: 1

Views

Author

Paul D. Hanna, Dec 10 2006

Keywords

Comments

a(n) is a tetrahedral power of 2; exponents of 2 in a(n) begin: 0, 0, 1, 4, 10, 20, 35, 56, 84, 120, 165, ..., n*(n-1)*(n-2)/6, ... (cf. A000292).
Table A125790 is related to partitions into powers of 2, with A002577 in column 1 of A125790; further, column k of A125790 equals row sums of matrix power A078121^k, where triangle A078121 shifts left one column under matrix square.
Also number of distinct instances of the one-in-three monotone 3SAT problem for n variables. - Paul Tarau (paul.tarau(AT)gmail.com), Jan 25 2008
Hankel transform of aerated 2-Catalan numbers (A015083). [Paul Barry, Dec 15 2010]

Crossrefs

Programs

  • Maple
    seq(2^(binomial(n, n-3)), n=1..10); # Zerinvary Lajos, Jun 16 2007 [modified by Georg Fischer, Nov 09 2023]
  • Mathematica
    A125791[n_]:=2^Binomial[n,n-3];Array[A125791,15] (* Paolo Xausa, Nov 05 2023 *)
  • PARI
    a(n)=if(n<1,0,2^(n*(n-1)*(n-2)/6))
    
  • PARI
    /* As determinant of n X n matrix: */
    {a(n)=local(q=2,A=Mat(1), B); for(m=1, n, B=matrix(m, m);
    for(i=1, m, for(j=1, i, if(j==i||j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B);
    return(matdet(matrix(n,n,r,c,(A^c)[r,1])))}
    for(n=1,15,print1(a(n),", "))
    
  • Prolog
    % This generates all 3SAT problem instances
    test:-test(4).
    test(Max):-
    between(1,Max,N),
    nl,
    one_in_three_monotone_3sat(N,Pss),
    write(N:Pss),nl,
    fail
    ; nl.
    % generates all one-in-three monotone 3SAT problems involving N variables
    one_in_three_monotone_3sat(N,Pss):-
    ints(1,N,Is),
    findall(Xs,ksubset(3,Is,Xs),Xss),
    subset_of(Xss,Pss).
    % subset generator
    subset_of([],[]).
    subset_of([X|Xs],Zs):-
    subset_of(Xs,Ys),
    add_element(X,Ys,Zs).
    add_element(_,Ys,Ys).
    add_element(X,Ys,[X|Ys]).
    % subsets of K elements
    ksubset(0,_,[]).
    ksubset(K,[X|Xs],[X|Rs]):-K>0,K1 is K-1,ksubset(K1,Xs,Rs).
    ksubset(K,[_|Xs],Rs):-K>0,ksubset(K,Xs,Rs).
    % list of integers in [From..To]
    ints(From,To,Is):-findall(I,between(From,To,I),Is).
    % Paul Tarau (paul.tarau(AT)gmail.com), Jan 25 2008

Formula

Determinant of n X n upper left corner submatrix of table A125790.
a(n) = 2^(binomial(n,n-3)). - Zerinvary Lajos, Jun 16 2007, modified to reflect the new offset by Paolo Xausa, Nov 06 2023.

Extensions

Name simplified; determinant formula moved out of name into formula section by Paul D. Hanna, Oct 16 2013
Offset changed to 1 by Paolo Xausa, Nov 06 2023

A135867 G.f. satisfies A(x) = 1 + x*A(2*x)^2.

Original entry on oeis.org

1, 1, 4, 36, 640, 21888, 1451008, 188941312, 48768745472, 25069815595008, 25722272102744064, 52730972085034156032, 216091838647321476726784, 1770657164881170759078117376, 29013990909330956353981535748096
Offset: 0

Views

Author

Paul D. Hanna, Dec 02 2007

Keywords

Comments

Self-convolution equals A135868 such that 2^n*A135868(n) = a(n+1) for n >= 0.

Crossrefs

Programs

  • Mathematica
    nmax = 15; A[] = 0; Do[A[x] = 1 + x*A[2*x]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Nov 04 2021 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,2*x)^2);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,2^(n-1)*sum(k=0,n-1,a(k)*a(n-k-1))) \\ Paul D. Hanna, Feb 09 2010

Formula

a(n) = 2^(n-1)*Sum_{k=0..n-1} a(k)*a(n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Feb 09 2010
a(n) ~ c * 2^(n*(n+1)/2), where c = 0.715337433614869740944075474484711589980951273610257702786245519231799678... - Vaclav Kotesovec, Nov 04 2021

A171192 G.f. satisfies A(x) = 1/(1 - x*A(2x)^2).

Original entry on oeis.org

1, 1, 5, 53, 1045, 37941, 2596693, 343615093, 89402126741, 46139256172725, 47433024462021589, 97333484052884523765, 399068205440018335950357, 3270764880283567936326235445, 53601302478763156422575938811989
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2009

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; A[] = 0; Do[A[x] = 1/(1 - x*A[2*x]^2) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Nov 03 2021 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1/(1-x*subst(A, x, 2*x)^2) ); polcoeff(A, n)}

Formula

a(0) = 1; a(n) = Sum_{i=0..n-1} Sum_{j=0..n-i-1} 2^(i+j) * a(i) * a(j) * a(n-i-j-1). - Ilya Gutkovskiy, Nov 03 2021
a(n) ~ c * 2^(n*(n+1)/2), where c = 1.3216968146657309382653061124105846042506... - Vaclav Kotesovec, Nov 03 2021

A171198 G.f. A(x) satisfies A(x) = 1/(1 - x*A(2*x)^8).

Original entry on oeis.org

1, 1, 17, 689, 53777, 7805201, 2138582801, 1132509669905, 1178804946216209, 2433551908785577745, 10007244528797884954897, 82140401194398306308608785, 1347106337625031145913841134865, 44163564651481078406730693648713489
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2009

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; A[] = 0; Do[A[x] = 1/(1 - x*A[2*x]^8) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Nov 03 2021 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1/(1-x*subst(A, x, 2*x)^8) ); polcoeff(A, n)}

Formula

a(n) ~ c * 2^(n*(n+5)/2), where c = 0.265929653305627916979803234586945454418485... - Vaclav Kotesovec, Nov 03 2021
a(0) = 1; a(n) = 2^(n-1) * Sum_{x_1, x_2, ..., x_9>=0 and x_1+x_2+...+x_9=n-1} (1/2)^x_1 * Product_{k=1..9} a(x_k). - Seiichi Manyama, Jul 06 2025

A343439 G.f.: 1 + 2^0*x/(1 + 2^1*x/(1 + 2^2*x/(1 + 2^3*x/(1 + 2^4*x/(1 + ...))))).

Original entry on oeis.org

1, 1, -2, 12, -136, 2736, -99616, 6810816, -900563072, 234247256832, -120883821425152, 124271556482829312, -255006726559759042560, 1045529090595650037657600, -8569159507007490469146992640, 140431398588497630920722150113280, -4602217897540461023955069241211781120
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(A=1+O(x)); for(i=1, n, A=1+2^(n-i)*x/A); polcoef(A, n);
    
  • PARI
    a(n) = if(n<2, 1, -sum(k=1, n-1, 2^k*a(k)*a(n-k)));

Formula

G.f. satisfies: A(x) = 1 + x/A(2*x).
G.f.: 1/(Sum_{k>=0} A015083(k) * (-x)^k).
a(0) = a(1) = 1 and a(n) = -Sum_{k=1..n-1} 2^k*a(k)*a(n-k) for n > 1.
a(n) = (-2)^(n-1) * A015083(n-1) for n > 0.

A348857 G.f. A(x) satisfies: A(x) = 1 / ((1 - x) * (1 - x * A(2*x))).

Original entry on oeis.org

1, 2, 7, 44, 481, 9254, 326395, 21927776, 2874607189, 744650622170, 383510575423471, 393869218949592212, 807827718206737362889, 3311287802485779192925838, 27136007596894473408507305443, 444677773080105539125038867872456, 14572535437424416878539776253365375549
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 02 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 16; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[2 x])) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = 1 + Sum[2^k a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]

Formula

a(n) = 1 + Sum_{k=0..n-1} 2^k * a(k) * a(n-k-1).
a(n) ~ c * 2^(n*(n-1)/2), where c = 10.96416094535958612421479005398505892527943513193882801485045169159164... - Vaclav Kotesovec, Nov 02 2021

A348901 G.f. A(x) satisfies: A(x) = 1 / (1 + x - 2 * x * A(2*x)).

Original entry on oeis.org

1, 1, 5, 49, 893, 30649, 2030213, 264198625, 68180168717, 35046644401609, 35958357173552597, 73714882938928013809, 302083844634245306686685, 2475275541582550287356775001, 40559867144321249927245807932197, 1329146863668196853655964629931680001
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 03 2021

Keywords

Comments

Counts lower triangular (0,1) matrices with 1's on the diagonal which cannot be decomposed in a nontrivial block diagonal fashion. For example, the third time is 5, counting the matrices [100,110,111], [100,110,011], [100,010,111], [100,110,101], [100,010,101]. There are 3 other 3x3 lower triangular (0,1) matrices with 1's on the diagonal; those others have block decompositions. - David Speyer, Jul 09 2025

Crossrefs

Programs

  • Mathematica
    nmax = 15; A[] = 0; Do[A[x] = 1/(1 + x - 2 x A[2 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = -a[n - 1] + Sum[2^(k + 1) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 15}]

Formula

a(0) = 1; a(n) = -a(n-1) + Sum_{k=0..n-1} 2^(k+1) * a(k) * a(n-k-1).
a(n) ~ 2^(n*(n+1)/2). - Vaclav Kotesovec, Nov 03 2021
G.f. A(x) satisfies 1/(1 - x*A(x)) = Sum_{n>=0} 2^(n(n-1)/2) * x^n. - David Speyer, Jul 09 2025
Previous Showing 21-30 of 45 results. Next