A015323
Gaussian binomial coefficient [ n,6 ] for q = -2.
Original entry on oeis.org
1, 43, 3655, 208335, 14208447, 882215391, 57344000415, 3642010817055, 233988483199263, 14946527496991519, 957498220445101855, 61250446192484546335, 3920970870875818419999, 250911985465716094666527
Offset: 6
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Diagonal k=6 of the triangular array
A015109. See there for further references and programs. -
M. F. Hasler, Nov 04 2012
-
Table[QBinomial[n, 6, -2], {n, 6, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
-
[gaussian_binomial(n,6,-2) for n in range(6,20)] # Zerinvary Lajos, May 27 2009
A015338
Gaussian binomial coefficient [ n,7 ] for q = -2.
Original entry on oeis.org
1, -85, 14535, -1652145, 225683007, -28005209505, 3642010817055, -462535373765985, 59438516325245343, -7593183562134412385, 972884994173649887135, -124468028808034701006945
Offset: 7
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Diagonal k=7 of the triangular array
A015109. See there for further references and programs. -
M. F. Hasler, Nov 04 2012
-
/* By definition: */ r:=7; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Bruno Berselli, Oct 30 2012
-
Table[QBinomial[n, 7, -2], {n, 7, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
-
[gaussian_binomial(n,7,-2) for n in range(7,19)] # Zerinvary Lajos, May 27 2009
A015405
Gaussian binomial coefficient [ n,11 ] for q=-2.
Original entry on oeis.org
1, -1365, 3727815, -6785865905, 14824402656063, -29439916001972385, 61250446192484546335, -124468028808034701006945, 255910660218571393553843871, -523082886040328458081329117025
Offset: 11
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Diagonal k=11 of the triangular array
A015109. See there for further references and programs. -
M. F. Hasler, Nov 04 2012
-
r:=11; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 05 2012
-
Table[QBinomial[n, 11, -2], {n, 11, 20}] (* Vincenzo Librandi, Nov 05 2012 *)
-
[gaussian_binomial(n,11,-2) for n in range(11,21)] # Zerinvary Lajos, May 28 2009
A015423
Gaussian binomial coefficient [ n,12 ] for q=-2.
Original entry on oeis.org
1, 2731, 14913991, 54301841231, 237244744338239, 942314556807454559, 3920970870875818419999, 15935828658299317547308959, 65529064844612576067331339935, 267883966717492783113707839256735
Offset: 12
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Diagonal k=12 of the triangular array
A015109. See there for further references and programs. -
M. F. Hasler, Nov 04 2012
-
r:=12; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 06 2012
-
Table[QBinomial[n, 12, -2], {n, 12, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
-
[gaussian_binomial(n,12,-2) for n in range(12,22)] # Zerinvary Lajos, May 28 2009
A172349
Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=4.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 9, 45, 9, 1, 1, 29, 261, 261, 29, 1, 1, 65, 1885, 3393, 1885, 65, 1, 1, 181, 11765, 68237, 68237, 11765, 181, 1, 1, 441, 79821, 1037673, 3343613, 1037673, 79821, 441, 1, 1, 1165, 513765, 18598293, 134321005, 134321005
Offset: 0
1;
1, 1;
1, 1, 1;
1, 5, 5, 1;
1, 9, 45, 9, 1;
1, 29, 261, 261, 29, 1;
1, 65, 1885, 3393, 1885, 65, 1;
1, 181, 11765, 68237, 68237, 11765, 181, 1;
1, 441, 79821, 1037673, 3343613, 1037673, 79821, 441, 1;
1, 1165, 513765, 18598293, 134321005, 134321005, 18598293, 513765, 1165, 1;
1, 2929, 3412285, 300963537, 6052711133, 13566421505, 6052711133, 300963537, 3412285, 2929, 1;
-
Clear[f, c, a, t];
f[0, a_] := 0; f[1, a_] := 1;
f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a];
c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
A172350
Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=5.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 6, 6, 1, 1, 11, 66, 11, 1, 1, 41, 451, 451, 41, 1, 1, 96, 3936, 7216, 3936, 96, 1, 1, 301, 28896, 197456, 197456, 28896, 301, 1, 1, 781, 235081, 3761296, 14019376, 3761296, 235081, 781, 1, 1, 2286, 1785366, 89565861, 781665696
Offset: 0
1;
1, 1;
1, 1, 1;
1, 6, 6, 1;
1, 11, 66, 11, 1;
1, 41, 451, 451, 41, 1;
1, 96, 3936, 7216, 3936, 96, 1;
1, 301, 28896, 197456, 197456, 28896, 301, 1;
1, 781, 235081, 3761296, 14019376, 3761296, 235081, 781, 1;
1, 2286, 1785366, 89565861, 781665696, 781665696, 89565861, 1785366, 2286, 1;
1, 6191, 14152626, 1842200151, 50409295041, 118031520096, 50409295041, 1842200151, 14152626, 6191, 1;
-
Clear[f, c, a, t];
f[0, a_] := 0; f[1, a_] := 1;
f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a];
c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
A172351
Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=6.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 7, 7, 1, 1, 13, 91, 13, 1, 1, 55, 715, 715, 55, 1, 1, 133, 7315, 13585, 7315, 133, 1, 1, 463, 61579, 483835, 483835, 61579, 463, 1, 1, 1261, 583843, 11093017, 46931995, 11093017, 583843, 1261, 1, 1, 4039, 5093179, 336877411
Offset: 0
1;
1, 1;
1, 1, 1;
1, 7, 7, 1;
1, 13, 91, 13, 1;
1, 55, 715, 715, 55, 1;
1, 133, 7315, 13585, 7315, 133, 1;
1, 463, 61579, 483835, 483835, 61579, 463, 1;
1, 1261, 583843, 11093017, 46931995, 11093017, 583843, 1261, 1;
1, 4039, 5093179, 336877411, 3446515051, 3446515051, 336877411, 5093179, 4039, 1;
-
Clear[f, c, a, t];
f[0, a_] := 0; f[1, a_] := 1;
f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a];
c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
A216206
a(n) = Product_{i=1..n} ((-2)^i-1).
Original entry on oeis.org
1, -3, -9, 81, 1215, -40095, -2525985, 325852065, 83092276575, -42626337882975, -43606743654283425, 89350217747626737825, 365889141676531491393375, -2997729737755822508985921375, -49111806293653640164716349886625, 1609344780436736134557590069434814625
Offset: 0
-
A216206 := proc(n)
mul( (-2)^i-1, i=1..n) ;
end proc:
-
Table[(-1)^n QPochhammer[-2, -2, n], {n, 0, 15}] (* Bruno Berselli, Mar 13 2013 *)
Table[Product[(-2)^k-1,{k,n}],{n,0,20}] (* Harvey P. Dale, Oct 21 2024 *)
A172347
Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=3.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 7, 28, 7, 1, 1, 19, 133, 133, 19, 1, 1, 40, 760, 1330, 760, 40, 1, 1, 97, 3880, 18430, 18430, 3880, 97, 1, 1, 217, 21049, 210490, 571330, 210490, 21049, 217, 1, 1, 508, 110236, 2673223, 15275560, 15275560, 2673223, 110236, 508
Offset: 0
1;
1, 1;
1, 1, 1;
1, 4, 4, 1;
1, 7, 28, 7, 1;
1, 19, 133, 133, 19, 1;
1, 40, 760, 1330, 760, 40, 1;
1, 97, 3880, 18430, 18430, 3880, 97, 1;
1, 217, 21049, 210490, 571330, 210490, 21049, 217, 1;
1, 508, 110236, 2673223, 15275560, 15275560, 2673223, 110236, 508, 1;
1, 1159, 588772, 31940881, 442609351, 931809160, 442609351, 31940881, 588772, 1159, 1;
-
Clear[f, c, a, t];
f[0, a_] := 0; f[1, a_] := 1;
f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a];
c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
A172352
Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=7.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 8, 8, 1, 1, 15, 120, 15, 1, 1, 71, 1065, 1065, 71, 1, 1, 176, 12496, 23430, 12496, 176, 1, 1, 673, 118448, 1051226, 1051226, 118448, 673, 1, 1, 1905, 1282065, 28205430, 133505702, 28205430, 1282065, 1905, 1, 1, 6616, 12603480
Offset: 0
1;
1, 1;
1, 1, 1;
1, 8, 8, 1;
1, 15, 120, 15, 1;
1, 71, 1065, 1065, 71, 1;
1, 176, 12496, 23430, 12496, 176, 1;
1, 673, 118448, 1051226, 1051226, 118448, 673, 1;
1, 1905, 1282065, 28205430, 133505702, 28205430, 1282065, 1905, 1;
1, 6616, 12603480, 1060267755, 12440474992, 12440474992, 1060267755, 12603480, 6616, 1;
-
Clear[f, c, a, t];
f[0, a_] := 0; f[1, a_] := 1;
f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a];
c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
Comments