cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 191 results. Next

A261520 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(3^k).

Original entry on oeis.org

1, 6, 36, 200, 1038, 5160, 24776, 115632, 527172, 2355998, 10349448, 44783064, 191211512, 806737800, 3367294320, 13918479872, 57020736942, 231697484304, 934399998412, 3742041461976, 14888854356840, 58881590423856, 231542984619720, 905666813058384
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 23 2015

Keywords

Comments

Convolution of A144067 and A256142.
In general, for m > 1, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(m^k), then a(n) ~ m^n * exp(2*sqrt(2*n) - 1 + c) / (sqrt(Pi) * 2^(3/4) * n^(3/4)), where c = 2 * Sum_{j>=1} 1/((2*j+1)*(m^(2*j)-1)).

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(3^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 3^n * exp(2*sqrt(2*n) - 1 + c) / (sqrt(Pi) * 2^(3/4) * n^(3/4)), where c = 2 * Sum_{j>=1} 1/((2*j+1)*(3^(2*j)-1)) = 0.0887630729103166089354170592729856346...

A273845 Expansion of Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^3 in powers of x.

Original entry on oeis.org

1, 3, 9, 21, 48, 99, 198, 375, 693, 1236, 2160, 3681, 6168, 10140, 16434, 26235, 41376, 64449, 99342, 151530, 229032, 343068, 509760, 751509, 1099998, 1598925, 2309274, 3314541, 4729920, 6711993, 9474624, 13306506, 18598437, 25874460, 35838288, 49427640, 67892592
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2016

Keywords

Examples

			G.f.: 1 + 3*x + 9*x^2 + 21*x^3 + 48*x^4 + 99*x^5 + 198*x^6 + ...
		

Crossrefs

Expansion of Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k in powers of x: A015128 (k=2), this sequence (k=3), A274327 (k=4), A277212 (k=5), A277283 (k=6), A160539 (k=7).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k))/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
    (QPochhammer[x^3, x^3]/QPochhammer[x, x]^3 + O[x]^40)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
  • PARI
    first(n)=my(x='x); Vec(prod(k=1, n, (1-x^(3*k))/(1-x^k)^3, 1+O(x^(n+1)))) \\ Charles R Greathouse IV, Nov 07 2016
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q^3)/eta(q)^3)} \\ Altug Alkan, Mar 20 2018

Formula

G.f.: Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^3.
a(n) ~ exp(4*Pi*sqrt(n)/3) / (9*sqrt(2)*n^(5/4)). - Vaclav Kotesovec, Nov 10 2016
a(0) = 1, a(n) = (3/n)*Sum_{k=1..n} A078708(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017
It appears that the g.f. A(x) = F(x)^3, where F(x) = exp( Sum_{n >= 0} x^(3*n+1)/((3*n + 1)*(1 - x^(3*n+1))) + x^(3*n+2)/((3*n + 2)*(1 - x^(3*n + 2))) ). Cf. A132972. - Peter Bala, Dec 23 2021

A280263 G.f.: Product_{k>=1} (1+x^(k^3)) / (1-x^(k^3)).

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 4, 6, 6, 6, 6, 6, 6, 6, 8, 10, 10, 10, 10, 10, 10, 10, 12, 14, 14, 16, 18, 18, 18, 18, 20, 22, 22, 26, 30, 30, 30, 30, 32, 34, 34, 38, 42, 42, 42, 42, 44, 46, 46, 50, 54, 54, 56, 58, 60, 62, 62, 66, 70, 70, 74, 78, 82, 86, 86, 90, 94
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 30 2016

Keywords

Comments

Convolution of A003108 and A279329.
In general, if m > 0 and g.f. = Product_{k>=1} (1 + x^(k^m)) / (1 - x^(k^m)), then a(n) ~ exp((m+1) * ((2^(1 + 1/m) - 1) * Gamma(1/m) * Zeta(1 + 1/m) / m^2)^(m/(m+1)) * (n/2)^(1/(m+1))) * ((2^(1 + 1/m) - 1) * Gamma(1/m) * Zeta(1 + 1/m))^(m/(m+1)) / (sqrt(m+1) * 2^(m/2 + (m+2)/(m+1)) * m^((3*m-1)/(2*(m+1))) * Pi^((m+1)/2) * n^((3*m+1)/(2*(m+1)))).

Crossrefs

Programs

  • Mathematica
    nmax=150; CoefficientList[Series[Product[(1+x^(k^3))/(1-x^(k^3)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2^(7/4) * ((2^(4/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * ((2^(4/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/4) / (3 * 2^(15/4) * Pi^2 * n^(5/4)).

A305102 G.f.: Sum_{k>=1} x^k/(1-x^k) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 1, 4, 10, 23, 46, 88, 158, 274, 459, 748, 1190, 1858, 2846, 4292, 6384, 9373, 13602, 19536, 27782, 39158, 54740, 75928, 104562, 143036, 194423, 262704, 352988, 471778, 627382, 830352, 1093994, 1435132, 1874920, 2439832, 3163020, 4085825, 5259602, 6748136
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2018

Keywords

Comments

Convolution of A006128 and A000009.
Convolution of A305082 and A000041.
Convolution of A000005 and A015128.
a(n) is the number of non-overlined parts in all overpartitions of n. - Joerg Arndt, Jun 18 2020

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Sum[x^k/(1-x^k), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    my(N=44, q='q+O('q^N)); Vec( prod(k=1,N, (1+q^k)/(1-q^k)) * sum(k=1,N, 1*q^k/(1-q^k)) ) \\ Joerg Arndt, Jun 18 2020

Formula

a(n) ~ exp(Pi*sqrt(n)) * (2*gamma + log(4*n/Pi^2)) / (8*Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620.

A341364 Expansion of (1 / theta_4(x) - 1)^3 / 8.

Original entry on oeis.org

1, 6, 24, 77, 216, 552, 1315, 2964, 6387, 13255, 26640, 52074, 99336, 185430, 339483, 610709, 1081227, 1886484, 3247502, 5521365, 9279624, 15429149, 25397088, 41412030, 66928700, 107265576, 170556654, 269164346, 421765920, 656419080, 1015044526, 1559950185, 2383284894
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=3..35);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 35; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^3/8, {x, 0, nmax}], x] // Drop[#, 3] &
    nmax = 35; CoefficientList[Series[(1/8) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^3, {x, 0, nmax}], x] // Drop[#, 3] &

Formula

G.f.: (1/8) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^3.
a(n) ~ A319552(n)/8 ~ 3*exp(Pi*sqrt(3*n)) / (512*n^(3/2)). - Vaclav Kotesovec, Feb 20 2021

A341365 Expansion of (1 / theta_4(x) - 1)^4 / 16.

Original entry on oeis.org

1, 8, 40, 156, 520, 1552, 4262, 10960, 26716, 62276, 139744, 303412, 640001, 1315832, 2644004, 5204044, 10052182, 19086348, 35672516, 65708116, 119409576, 214289116, 380068582, 666723748, 1157550524, 1990230968, 3390558072, 5726064688, 9590759624, 15938198484, 26289242026
Offset: 4

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=4..34);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 34; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^4/16, {x, 0, nmax}], x] // Drop[#, 4] &
    nmax = 34; CoefficientList[Series[(1/16) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^4, {x, 0, nmax}], x] // Drop[#, 4] &

Formula

G.f.: (1/16) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^4.
a(n) ~ A284286(n)/16. - Vaclav Kotesovec, Feb 20 2021

A341368 Expansion of (1 / theta_4(x) - 1)^7 / 128.

Original entry on oeis.org

1, 14, 112, 665, 3248, 13776, 52437, 183080, 595399, 1824109, 5310144, 14787542, 39605363, 102465972, 257005641, 626841236, 1490521109, 3462881324, 7875519169, 17562223791, 38456245849, 82793422502, 175452110162, 366348547908, 754392685046, 1533283745644, 3078157040665
Offset: 7

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 7):
    seq(a(n), n=7..33);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 33; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^7/128, {x, 0, nmax}], x] // Drop[#, 7] &
    nmax = 33; CoefficientList[Series[(1/128) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^7, {x, 0, nmax}], x] // Drop[#, 7] &

Formula

G.f.: (1/128) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^7.

A341369 Expansion of (1 / theta_4(x) - 1)^8 / 256.

Original entry on oeis.org

1, 16, 144, 952, 5136, 23904, 99292, 376512, 1324376, 4372632, 13673888, 40787848, 116713350, 321861312, 858693192, 2223428224, 5602833292, 13772292360, 33089930724, 77846837848, 179602530648, 406914172336, 906438716196, 1987418937952, 4293164981849, 9144987747024
Offset: 8

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 8):
    seq(a(n), n=8..33);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 33; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^8/256, {x, 0, nmax}], x] // Drop[#, 8] &
    nmax = 33; CoefficientList[Series[(1/256) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^8, {x, 0, nmax}], x] // Drop[#, 8] &

Formula

G.f.: (1/256) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^8.

A341370 Expansion of (1 / theta_4(x) - 1)^9 / 512.

Original entry on oeis.org

1, 18, 180, 1311, 7740, 39204, 176388, 721530, 2728053, 9651056, 32246892, 102515508, 311923386, 912771468, 2579132196, 7060677537, 18781247700, 48660380190, 123061973176, 304351869708, 737293187286, 1752035386188, 4089222211212, 9384936015492, 21201250825554
Offset: 9

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 9):
    seq(a(n), n=9..33);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 33; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^9/512, {x, 0, nmax}], x] // Drop[#, 9] &
    nmax = 33; CoefficientList[Series[(1/512) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^9, {x, 0, nmax}], x] // Drop[#, 9] &

Formula

G.f.: (1/512) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^9.

A160525 Coefficients in the expansion of C/B^2, in Watson's notation of page 118.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 65, 109, 183, 295, 471, 732, 1129, 1705, 2554, 3769, 5517, 7979, 11458, 16289, 23007, 32227, 44869, 62028, 85284, 116530, 158432, 214228, 288348, 386224, 515156, 684109, 904963, 1192353, 1565383, 2047642, 2669591, 3468797, 4493351, 5802533
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2009

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 109*x^7 + ...
G.f. = q^5 + 2*q^29 + 5*q^53 + 10*q^77 + 20*q^101 + 36*q^125 + 65*q^149 + 109*q^173 + ...
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^2: A000041 (k=1), A015128 (k=2), A278690 (k=3), A160461 (k=5), this sequence (k=7).

Programs

  • Maple
    M1:=1200:
    fm:=mul(1-x^n,n=1..M1):
    A:=x^(1/7)*subs(x=x^(24/7),fm):
    B:=x*subs(x=x^24,fm):
    C:=x^7*subs(x=x^168,fm):
    t1:=C/B^2;
    t2:=series(t1,x,M1);
    t3:=subs(x=y^(1/24),t2/x^5);
    t4:=series(t3,y,M1/24);
    t5:=seriestolist(t4); # A160525
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 13 2017 *)

Formula

See Maple code for formula.
G.f.: Product_{n>=1} (1 - x^(7*n))/(1 - x^n)^2. - Seiichi Manyama, Nov 06 2016
a(n) ~ sqrt(13/3) * exp(sqrt(26*n/21)*Pi) / (28*n). - Vaclav Kotesovec, Apr 13 2017
Previous Showing 51-60 of 191 results. Next