A015367
Gaussian binomial coefficient [ n,8 ] for q=-10.
Original entry on oeis.org
1, 90909091, 9182736463728191, 917356290091909926537191, 91744803489448201844894398447191, 9174388605059687035653977786959679347191, 917439777945737474914267633276565557306870347191
Offset: 8
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,8] for q=-2..-13:
A015356,
A015357,
A015359,
A015360,
A015361,
A015363,
A015364,
A015365,
A015368,
A015369,
A015370. -
M. F. Hasler, Nov 03 2012
-
r:=8; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
-
Table[QBinomial[n, 8, -10], {n, 8, 14}] (* Vincenzo Librandi, Nov 03 2012 *)
-
A015367(n,r=8,q=-10)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,8,-10) for n in range(8,14)] # Zerinvary Lajos, May 25 2009
A015368
Gaussian binomial coefficient [ n,8 ] for q=-11.
Original entry on oeis.org
1, 196495641, 42471590605551405, 9097327679593690752247605, 1950226184559914695131839252162415, 418045706884240723248900544124967821025015, 89611860518118688087749643530422009144522097477435
Offset: 8
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,8] for q=-2..-13:
A015356,
A015357,
A015359,
A015360,
A015361,
A015363,
A015364,
A015365,
A015367,
A015369,
A015370. -
M. F. Hasler, Nov 03 2012
-
r:=8; q:=-11; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
-
Table[QBinomial[n, 8, -11], {n, 8, 14}] (* Vincenzo Librandi, Nov 03 2012 *)
-
A015368(n,r=8,q=-11)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,8,-11) for n in range(8,14)] # Zerinvary Lajos, May 25 2009
A015369
Gaussian binomial coefficient [ n,8 ] for q=-12.
Original entry on oeis.org
1, 396906181, 171855836163195541, 73852125402551558141191381, 31756593605318274408653251348629973, 13654699102424414895934644240803700147539413, 5871272644707452307243912611380074655778555267227093
Offset: 8
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,8] for q=-2..-13:
A015356,
A015357,
A015359,
A015360,
A015361,
A015363,
A015364,
A015365,
A015367,
A015368,
A015370. -
M. F. Hasler, Nov 03 2012
-
r:=8; q:=-12; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
-
A015369:=n->mul(((-12)^(n-i+1)-1)/((-12)^i-1), i=1..8): seq(A015369(n), n=8..20); # Wesley Ivan Hurt, Jan 29 2017
-
Table[QBinomial[n, 8, -12], {n, 8, 14}] (* Vincenzo Librandi, Nov 03 2012 *)
-
A015369(n,r=8,q=-12)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,8,-12) for n in range(8,14)] # Zerinvary Lajos, May 24 2009
A015251
Gaussian binomial coefficient [ n,2 ] for q = -3.
Original entry on oeis.org
1, 7, 70, 610, 5551, 49777, 448540, 4035220, 36321901, 326882347, 2941985410, 26477735830, 238300021051, 2144698993717, 19302294530680, 173720640014440, 1563485792415001, 14071372034879887
Offset: 2
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
-
Table[QBinomial[n, 2, -3], {n, 2, 25}] (* G. C. Greubel, Jul 30 2016 *)
-
a(n)=([0,1,0; 0,0,1; -27,21,7]^(n-2)*[1;7;70])[1,1] \\ Charles R Greathouse IV, Jul 30 2016
-
[gaussian_binomial(n,2,-3) for n in range(2,18)] # Zerinvary Lajos, May 28 2009
A015306
Gaussian binomial coefficient [ n,5 ] for q = -3.
Original entry on oeis.org
1, -182, 49777, -11662040, 2869444942, -694405675964, 168973319623174, -41041673208656120, 9974653139743515223, -2423717068608654822146, 588973263031690760850991, -143119691677080990521708240
Offset: 5
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Gaussian binomial coefficients [n,5]:
A015305 (q=-2), this sequence (q=-3),
A015308 (q=-4),
A015309 (q=-5),
A015310 (q=-6),
A015312 (q=-7),
A015313 (q=-8),
A015315 (q=-9),
A015316 (q=-10),
A015317 (q=-11),
A015319 (q=-12),
A015321 (q=-13).
-
List([5..25], n-> (1 -61*(-3)^(n-4) +610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) +61*(-3)^(4*n-10) -(-3)^(5*n-10))/17489920); # G. C. Greubel, Sep 21 2019
-
[(1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920: n in [5..25]]; // G. C. Greubel, Sep 21 2019
-
seq((1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920, n=5..25); # G. C. Greubel, Sep 21 2019
-
Table[QBinomial[n, 5, -3], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
-
a(n) = (1 - 61*(-3)^(n-4) + 610*(-3)^(2*n-7) - 610*(-3)^(3*n-9) + 61*(-3)^(4*n-10) - (-3)^(5*n-10))/17489920 \\ G. C. Greubel, Sep 21 2019
-
[gaussian_binomial(n,5,-3) for n in range(5,17)] # Zerinvary Lajos, May 27 2009
A015268
Gaussian binomial coefficient [ n,3 ] for q = -3.
Original entry on oeis.org
1, -20, 610, -15860, 433771, -11662040, 315323620, -8509702520, 229798289941, -6204226946060, 167517069529030, -4522934399547980, 122119467087816511, -3297223466672052080, 89025052902439936840, -2403676254645238280240
Offset: 3
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
-
[(-1+7*3^(2*n-3)+(-1)^n*3^(n-2)*(7-3^(2*n-1)))/896: n in [3..18]]; // Bruno Berselli, Oct 29 2012
-
Table[QBinomial[n, 3, -3], {n, 3, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
-
makelist(coeff(taylor(1/((1-x)*(1+3*x)*(1-9*x)*(1+27*x)), x, 0, n), x, n), n, 0, 15); /* Bruno Berselli, Oct 29 2012 */
-
[gaussian_binomial(n,3,-3) for n in range(3,19)] # Zerinvary Lajos, May 27 2009
A015324
Gaussian binomial coefficient [ n,6 ] for q = -3.
Original entry on oeis.org
1, 547, 448540, 315323620, 232740363922, 168973319623174, 123350523324917020, 89881489830655851460, 65533580739687859229563, 47771556642163840723529281, 34826053765400471578213696840
Offset: 6
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
-
Table[QBinomial[n, 6, -3], {n, 6, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
-
[gaussian_binomial(n,6,-3) for n in range(6,17)] # Zerinvary Lajos, May 27 2009
A015340
Gaussian binomial coefficient [ n,7 ] for q = -3.
Original entry on oeis.org
1, -1640, 4035220, -8509702520, 18843459775162, -41041673208656120, 89881489830655851460, -196480936769813691291560, 429769342296322230713871283, -939857780045414554730512966640
Offset: 7
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
- Vincenzo Librandi, Table of n, a(n) for n = 7..200
- Index entries for linear recurrences with constant coefficients, signature (-1640,1345620,314875080,-25929962838,-688631799960,6436058745780,17154979252920,-22876792454961).
-
Table[QBinomial[n, 7, -3], {n, 7, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
-
[gaussian_binomial(n,7,-3) for n in range(7,17)] # Zerinvary Lajos, May 27 2009