A015364
Gaussian binomial coefficient [ n,8 ] for q=-8.
Original entry on oeis.org
1, 14913081, 254171409198201, 4255976180162154314361, 71420868399845502303592335993, 1198206769685258176958937686297856633, 20102650473193049559156865045854634505718393
Offset: 8
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,8] for q=-2..-13:
A015356,
A015357,
A015359,
A015360,
A015361,
A015363,
A015365,
A015367,
A015368,
A015369,
A015370. -
M. F. Hasler, Nov 03 2012
-
r:=8; q:=-8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
-
Table[QBinomial[n, 8, -8], {n, 8, 15}] (* Vincenzo Librandi, Nov 03 2012 *)
-
A015364(n, r=8, q=-8)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,8,-8) for n in range(8,15)] # Zerinvary Lajos, May 25 2009
A015365
Gaussian binomial coefficient [ n,8 ] for q=-9.
Original entry on oeis.org
1, 38742049, 1688564650965445, 72587599955185580267365, 3125134483161392104770081009295, 134524513999723596604019036560420619887, 5790850118312580284352508983888376537699322083
Offset: 8
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,8] for q=-2..-13:
A015356,
A015357,
A015359,
A015360,
A015361,
A015363,
A015364,
A015367,
A015368,
A015369,
A015370. -
M. F. Hasler, Nov 03 2012
-
r:=8; q:=-9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
-
Table[QBinomial[n, 8, -9], {n, 8, 15}] (* Vincenzo Librandi, Nov 03 2012 *)
-
A015365(n, r=8, q=-9)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,8,-9) for n in range(8,14)] # Zerinvary Lajos, May 25 2009
A015367
Gaussian binomial coefficient [ n,8 ] for q=-10.
Original entry on oeis.org
1, 90909091, 9182736463728191, 917356290091909926537191, 91744803489448201844894398447191, 9174388605059687035653977786959679347191, 917439777945737474914267633276565557306870347191
Offset: 8
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,8] for q=-2..-13:
A015356,
A015357,
A015359,
A015360,
A015361,
A015363,
A015364,
A015365,
A015368,
A015369,
A015370. -
M. F. Hasler, Nov 03 2012
-
r:=8; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
-
Table[QBinomial[n, 8, -10], {n, 8, 14}] (* Vincenzo Librandi, Nov 03 2012 *)
-
A015367(n,r=8,q=-10)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,8,-10) for n in range(8,14)] # Zerinvary Lajos, May 25 2009
A015368
Gaussian binomial coefficient [ n,8 ] for q=-11.
Original entry on oeis.org
1, 196495641, 42471590605551405, 9097327679593690752247605, 1950226184559914695131839252162415, 418045706884240723248900544124967821025015, 89611860518118688087749643530422009144522097477435
Offset: 8
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,8] for q=-2..-13:
A015356,
A015357,
A015359,
A015360,
A015361,
A015363,
A015364,
A015365,
A015367,
A015369,
A015370. -
M. F. Hasler, Nov 03 2012
-
r:=8; q:=-11; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
-
Table[QBinomial[n, 8, -11], {n, 8, 14}] (* Vincenzo Librandi, Nov 03 2012 *)
-
A015368(n,r=8,q=-11)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,8,-11) for n in range(8,14)] # Zerinvary Lajos, May 25 2009
A015369
Gaussian binomial coefficient [ n,8 ] for q=-12.
Original entry on oeis.org
1, 396906181, 171855836163195541, 73852125402551558141191381, 31756593605318274408653251348629973, 13654699102424414895934644240803700147539413, 5871272644707452307243912611380074655778555267227093
Offset: 8
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,8] for q=-2..-13:
A015356,
A015357,
A015359,
A015360,
A015361,
A015363,
A015364,
A015365,
A015367,
A015368,
A015370. -
M. F. Hasler, Nov 03 2012
-
r:=8; q:=-12; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
-
A015369:=n->mul(((-12)^(n-i+1)-1)/((-12)^i-1), i=1..8): seq(A015369(n), n=8..20); # Wesley Ivan Hurt, Jan 29 2017
-
Table[QBinomial[n, 8, -12], {n, 8, 14}] (* Vincenzo Librandi, Nov 03 2012 *)
-
A015369(n,r=8,q=-12)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,8,-12) for n in range(8,14)] # Zerinvary Lajos, May 24 2009
A015265
Gaussian binomial coefficient [ n,2 ] for q = -13.
Original entry on oeis.org
1, 157, 26690, 4508570, 761974851, 128773405047, 21762709934980, 3677897920745140, 621564749363392901, 105044442632566365137, 17752510805031727164870, 3000174326048697741925710, 507029461102251552321630151, 85687978926280231101185088427
Offset: 2
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,2] for q=-2,...,-12:
A015249,
A015251,
A015253,
A015255,
A015257 A015258,
A015259,
A015260,
A015261,
A015262,
A015264.
Cf. Gaussian binomial coefficients [n,r] for q=-13:
A015286 (r=3),
A015303 (r=4),
A015321 (r=5),
A015337 (r=6),
A015355 (r=7),
A015370 (r=8),
A015385 (r=9),
A015402 (r=10),
A015422 (r=11),
A015438 (r=12). -
M. F. Hasler, Nov 03 2012
-
I:=[1,157,26690]; [n le 3 select I[n] else 157*Self(n-1)+2041*Self(n-2)-2197*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 28 2012
-
Table[QBinomial[n, 2, -13], {n, 2, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
-
A015265(n,q=-13)=(1-q^n)*(q^(n-1)-1)/2352 \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,2,-13) for n in range(2,14)] # Zerinvary Lajos, May 27 2009
A015286
Gaussian binomial coefficient [ n,3 ] for q = -13.
Original entry on oeis.org
1, -2040, 4508570, -9900819720, 21752862899691, -47790911017216080, 104996653267533662740, -230677643550873536294640, 506798783502833908602716981, -1113436927250681654567602842120
Offset: 3
A015286(7) = 21752862899691 = A015303(7),
A015286(8) = -47790911017216080 = A015321(8),
A015286(9) = 104996653267533662740 = A015337(9). - _M. F. Hasler_, Nov 03 2012
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,r] for q=-13:
A015265 (r=2),
A015303 (r=4),
A015321 (r=5),
A015337 (r=6),
A015355 (r=7),
A015370 (r=8),
A015385 (r=9),
A015402 (r=10),
A015422 (r=11),
A015438 (r=12). -
M. F. Hasler, Nov 03 2012
Fourth row (r=3) or column (resp. diagonal) in
A015129 (read as square array resp. triangle). -
M. F. Hasler, Nov 03 2012
-
r:=3; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 02 2016
-
QBinomial[Range[3,15],3,-13] (* Harvey P. Dale, Jun 21 2012 *)
Table[QBinomial[n, 3, -13], {n, 3, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
-
A015286(n,r=3,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,3,-13) for n in range(3,13)] # Zerinvary Lajos, May 27 2009
A015303
Gaussian binomial coefficient [ n,4 ] for q = -13.
Original entry on oeis.org
1, 26521, 761974851, 21752862899691, 621305270140974342, 17745052029585350965782, 506816536013640476467362442, 14475186854407942097510802411322
Offset: 4
To illustrate the relation qC(n,r)=qC(n,n-r), here with r=4, n=r+1...r+3:
A015303(5) = 26521 = A015000(5),
A015303(6) = 761974851 = A015265(6),
A015303(7) = 21752862899691 = A015286(7).
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. q-integers and Gaussian binomial coefficients [n,r] for q=-13:
A015000,
A015265 (r=2),
A015286 (r=3),
A015321 (r=5),
A015337 (r=6),
A015355 (r=7),
A015370 (r=8),
A015385 (r=9),
A015402 (r=10),
A015422 (r=11),
A015438 (r=12). -
M. F. Hasler, Nov 03 2012
Fifth row (r=4) or column (resp. diagonal) of
A015129, read as square (resp. triangular) array.
-
Table[QBinomial[n, 4, -13], {n, 4, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
-
A015303(n,r=4,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,4,-13) for n in range(4,12)] # Zerinvary Lajos, May 27 2009
A015337
Gaussian binomial coefficient [ n,6 ] for q = -13.
Original entry on oeis.org
1, 4482037, 21762709934980, 104996653267533662740, 506816536013640476467362442, 2446300028783605805772822454177234, 11807825441932996339362317150047214843540
Offset: 6
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,r] for q=-13:
A015265 (r=2),
A015286 (r=3),
A015303 (r=4),
A015321 (r=5),
A015355 (r=7),
A015370 (r=8),
A015385 (r=9),
A015402 (r=10),
A015422 (r=11),
A015438 (r=12). -
M. F. Hasler, Nov 03 2012
-
Table[QBinomial[n, 6, -13], {n, 6, 10}] (* Vincenzo Librandi, Oct 29 2012 *)
-
A015337(n,r=6,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,6,-13) for n in range(6,13)] # Zerinvary Lajos, May 27 2009
A015355
Gaussian binomial coefficient [ n,7 ] for q=-13.
Original entry on oeis.org
1, -58266480, 3677897920745140, -230677643550873536294640, 14475186854407942097510802411322, -908294062111964496034866469968025332240
Offset: 7
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Cf. Gaussian binomial coefficients [n,r] for q=-13:
A015265 (r=2),
A015286 (r=3),
A015303 (r=4),
A015321 (r=5),
A015337 (r=6),
A015370 (r=8),
A015385 (r=9),
A015402 (r=10),
A015422 (r=11),
A015438 (r=12). -
M. F. Hasler, Nov 03 2012
-
r:=7; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..15]]; // Vincenzo Librandi, Nov 02 2012
-
Table[QBinomial[n, 7, -13], {n, 7, 16}] (* Vincenzo Librandi, Nov 02 2012 *)
-
A015355(n,r=7,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
[gaussian_binomial(n,7,-13) for n in range(7,13)] # Zerinvary Lajos, May 27 2009