cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A015470 q-Fibonacci numbers for q=12, scaling a(n-2).

Original entry on oeis.org

0, 1, 1, 13, 157, 22621, 3278173, 5632106845, 9794204234077, 201818365309759837, 4211530365904119214429, 1041342647528423104910537053, 260767900948768868884822059725149, 773726564635922870118341112574642827613
Offset: 0

Views

Author

Keywords

Crossrefs

q-Fibonacci numbers: A000045 (q=1), A015459 (q=2), A015460 (q=3), A015461 (q=4),
A015462 (q=5), A015463 (q=6), A015464 (q=7), A015465 (q=8), A015467 (q=9), A015468 (q=10), A015469 (q=11), this sequence (q=12).

Programs

  • GAP
    q:=12;; a:=[0,1];; for n in [3..20] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # G. C. Greubel, Dec 17 2019
  • Magma
    [0] cat[n le 2 select 1 else Self(n-1) + Self(n-2)*(12^(n-2)): n in [1..15]]; // Vincenzo Librandi, Nov 09 2012
    
  • Maple
    q:=12; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))*q^(j^2), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 17 2019
  • Mathematica
    RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+a[n-2]*12^(n-2)},  a, {n, 60}] (* Vincenzo Librandi, Nov 09 2012 *)
    F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j^2), {j, 0, Floor[(n-1)/2]}];
    Table[F[n, 12], {n, 0, 20}] (* G. C. Greubel, Dec 17 2019 *)
  • PARI
    q=12; m=20; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=v[n-1]+q^(n-3)*v[n-2]); v \\ G. C. Greubel, Dec 17 2019
    
  • Sage
    def F(n,q): return sum( q_binomial(n-j-1, j, q)*q^(j^2) for j in (0..floor((n-1)/2)))
    [F(n,12) for n in (0..20)] # G. C. Greubel, Dec 17 2019
    

Formula

a(n) = a(n-1) + 12^(n-2)*a(n-2).

A280294 a(n) = a(n-1) + 2^n * a(n-2) with a(0) = 1 and a(1) = 1.

Original entry on oeis.org

1, 1, 5, 13, 93, 509, 6461, 71613, 1725629, 38391485, 1805435581, 80431196861, 7475495336637, 666367860021949, 123144883455482557, 21958686920654707389, 8092381769059159562941, 2886261393833112966453949, 2124255587862077437434059453
Offset: 0

Views

Author

Seiichi Manyama, Dec 31 2016

Keywords

Comments

The Rogers-Ramanujan continued fraction is defined by R(q) = q^(1/5)/(1+q/(1+q^2/(1+q^3/(1+ ... )))). The limit of a(n)/A015459(n+2) is 2^(-1/5) * R(2).

Examples

			1/1 = a(0)/A015459(2).
1/(1+2/1) = 1/3 = a(1)/A015459(3).
1/(1+2/(1+2^2/1)) = 5/7 = a(2)/A015459(4).
1/(1+2/(1+2^2/(1+2^3/1))) = 13/31 = a(3)/A015459(5).
		

Crossrefs

Cf. similar sequences with the recurrence a(n-1) + q^n * a(n-2) for n>1, a(0)=1 and a(1)=1: this sequence (q=2), A279543 (q=3), A280340 (q=10).

Programs

A165901 a(0)=0, a(1)=1, a(n) = a(n-1) + 2^(n-3)*a(n-2).

Original entry on oeis.org

0, 1, 1, 2, 4, 12, 44, 236, 1644, 16748, 227180, 4514668, 120830828, 4743850860, 252205386604, 19683018509164, 2085749545569132, 324572324799712108, 68670413434009029484, 21339842291507941739372, 9022108271913939454266220
Offset: 0

Views

Author

Jaume Oliver Lafont, Sep 29 2009

Keywords

Comments

The difference equation y(n, x, s, q) = x*y(n-1, x, s, q) + q^(n-3)*y(n-2, x, s, q) yields the two-variable q-Fibonacci polynomials in the form y(n, x, s, q) = Sum_{j=0..floor((n-1)/2)} q-binomial(n-j-1,j, q)*q^(j*(j-1))*x^(n-2*j-1)*s^j. When x=s=1 these polynomials reduce to q-Fibonacci numbers. This family of q-Fibonacci numbers is different from that of the q-Fibonacci numbers defined in A015459 and A015473. - G. C. Greubel, Dec 17 2019

Crossrefs

Cf. A015459.
q-Fibonacci numbers: A000045 (q=1), this sequence (q=2), A165902 (q=3).

Programs

  • GAP
    q:=2;; a:=[0,1];; for n in [3..20] do a[n]:=a[n-1]+q^(n-3)*a[n-2]; od; a; # G. C. Greubel, Dec 19 2019
  • Magma
    q:=2; I:=[0,1]; [n le 2 select I[n] else Self(n-1) + q^(n-3)*Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 19 2019
    
  • Maple
    q:=2; seq(add((product((1-q^(n-j-1-k))/(1-q^(k+1)), k=0..j-1))* q^(j*(j-1)), j = 0..floor((n-1)/2)), n = 0..20); # G. C. Greubel, Dec 19 2019
  • Mathematica
    F[n_, q_]:= Sum[QBinomial[n-j-1, j, q]*q^(j*(j-1)), {j,0,Floor[(n-1)/2]}];
    Table[F[n, 2], {n,0,20}] (* G. C. Greubel, Dec 19 2019 *)
    nxt[{n_,a_,b_}]:={n+1,b,b+a*2^(n-2)}; NestList[nxt,{1,0,1},20][[All,2]] (* Harvey P. Dale, Oct 03 2021 *)
  • PARI
    a(n) = if(n<2, n, a(n-1) + 2^(n-3)*a(n-2));
    
  • Sage
    def F(n,q): return sum( q_binomial(n-j-1, j, q)*q^(j*(j-1)) for j in (0..floor((n-1)/2)))
    [F(n,2) for n in (0..20)] # G. C. Greubel, Dec 19 2019
    

A136680 Triangle T(n, k) = f(k) for k < n+1, otherwise 0, where f(k) = f(k-1) + k^(k-2)*f(k-2) with f(0) = 0 and f(1) = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 4, 20, 1, 1, 4, 20, 520, 1, 1, 4, 20, 520, 26440, 1, 1, 4, 20, 520, 26440, 8766080, 1, 1, 4, 20, 520, 26440, 8766080, 6939853440, 1, 1, 4, 20, 520, 26440, 8766080, 6939853440, 41934828744960, 1, 1, 4, 20, 520, 26440, 8766080, 6939853440, 41934828744960, 694027278828744960
Offset: 1

Views

Author

Roger L. Bagula, Apr 06 2008

Keywords

Examples

			Triangle begins as:
  1;
  1, 1;
  1, 1, 4;
  1, 1, 4, 20;
  1, 1, 4, 20, 520;
  1, 1, 4, 20, 520, 26440;
  1, 1, 4, 20, 520, 26440, 8766080;
  1, 1, 4, 20, 520, 26440, 8766080, 6939853440;
  1, 1, 4, 20, 520, 26440, 8766080, 6939853440, 41934828744960;
		

Crossrefs

Programs

  • Magma
    function f(k)
      if k lt 2 then return k;
      else return f(k-1) + k^(k-2)*f(k-2);
      end if; return f;
    end function;
    A136680:= func< n,k | k le n select f(k) else 0 >;
    [A136680(n,k): k in [1..n], n in [1..14]]; // G. C. Greubel, Dec 01 2022
    
  • Mathematica
    T[k_]:= T[k]= If[k<2, k, T[k-1] + n^(k-2)*T[k-2]];
    Table[T[k], {n,10}, {k,n}]//Flatten
  • SageMath
    @CachedFunction
    def f(k):
        if (k<2): return k
        else: return f(k-1) + k^(k-2)*f(k-2)
    def A136680(n,k): return f(k) if (k < n+1) else 0
    flatten([[A136680(n,k) for k in range(1,n+1)] for n in range(1,15)]) # G. C. Greubel, Dec 01 2022

Formula

T(k) = T(k-1) + n^(k-2)*T(k-2), with T(0) = 0, T(1) = 1.
T(n, k) = f(k) for k < n+1, otherwise 0, where f(k) = f(k-1) + k^(k-2)*f(k-2) with f(0) = 0 and f(1) = 1. - G. C. Greubel, Dec 01 2022

Extensions

Edited by G. C. Greubel, Dec 01 2022

A241497 q-Pell numbers with q=2.

Original entry on oeis.org

0, 1, 2, 6, 20, 88, 496, 3808, 39360, 566144, 11208448, 312282624, 12102016000, 663758845952, 50897375227904, 5539307216494592, 844981210166968320, 183201981290428727296, 55743092552083293274112
Offset: 0

Views

Author

Ralf Stephan, Apr 24 2014

Keywords

Crossrefs

Cf. A015459.

Programs

  • Sage
    # sage -i ore_algebra
    from ore_algebra import *
    R. = QQ['x']; A. = OreAlgebra(R, 'Qx', q=2)
    print((Qx^2 - 2*Qx - x).to_list([0,1], 10))

Formula

Recurrence: a(n) = 2*a(n-1) + 2^(n-2) a(n-2), a(0) = 0, a(1) = 1.

A241498 q-Lucas numbers with q=2.

Original entry on oeis.org

2, 1, 3, 5, 17, 57, 329, 2153, 23209, 298793, 6240297, 159222313, 6549286441, 332636583465, 27158513845801, 2752117405591081, 447717208255194665, 90629100354663736873, 29432224060567101302313, 11908369665747052420720169, 7727389313799049256214259241, 6251142704628989668810750223913
Offset: 0

Views

Author

Ralf Stephan, Apr 24 2014

Keywords

Comments

a(n) = 2k+1, where apparently k = 8m, m odd for n > 3.
More generally, a(k) is congruent to a(n) modulo 2^(n-1) for any k > n. - Charlie Neder, Mar 09 2019

Crossrefs

Programs

  • Sage
    # sage -i ore_algebra
    from ore_algebra import *
    R. = QQ['x']; A. = OreAlgebra(R, 'Qx', q=2)
    print((Qx^2 - Qx - x).to_list([2,1], 10))

Formula

Recurrence: a(n) = a(n-1) + 2^(n-2)*a(n-2), starting 2, 1.
Previous Showing 11-16 of 16 results.