cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 102 results. Next

A360035 Expansion of e.g.f. x*exp(x)*cosh(x)*sinh(x).

Original entry on oeis.org

0, 0, 2, 6, 28, 100, 366, 1274, 4376, 14760, 49210, 162382, 531444, 1727180, 5580134, 17936130, 57395632, 182948560, 581130738, 1840247318, 5811307340, 18305618100, 57531942622, 180441092746, 564859072968, 1765184603000, 5507375961386, 17157594341214, 53379182394916
Offset: 0

Views

Author

Enrique Navarrete, Jan 22 2023

Keywords

Comments

a(n) is the number of ordered set partitions of an n-set into 3 sets such that the first set has an even number of elements, the second set has an odd number of elements, and an element is selected from the third (see example).

Examples

			For n = 3, the 6 cases are (where the element selected from the third set is in parenthesis):
{}, {1}, {(2), 3}
{}, {1}, {2, (3)}
{}, {2}, {(1), 3}
{}, {2}, {1, (3)}
{}, {3}, {(1), 2}
{}, {3}, {1, (2)}.
		

Crossrefs

A015518 is the case of no element selected in the 3rd set.

Formula

a(n) = n*A015518(n-1) for n > 0.
a(n) = n*(3^(n-1) - (-1)^(n-1))/4.
G.f.: 2*x^2*(1 - x)/((1 + x)^2*(1 - 3*x)^2). - Stefano Spezia, Jan 23 2023

A366502 Let q = A246655(n) for n >= 2, then a(n) = (q - Kronecker(-4,q))/4 - 1.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 7, 8, 9, 10, 11, 11, 12, 14, 14, 15, 16, 17, 17, 19, 19, 20, 21, 23, 24, 25, 26, 26, 27, 29, 30, 31, 31, 32, 33, 34, 36, 37, 38, 40, 41, 41, 42, 44, 44, 47, 47, 48, 49, 52
Offset: 2

Views

Author

Jianing Song, Oct 12 2023

Keywords

Comments

If q is not a power of 2, then a(n) is the number of pairs of consecutive nonzero squares in the finite field F_q. In other words, a(n) is the number of solutions to x^((q-1)/2) = (x+1)^((q-1)/2) = 1 in F_q. This can be proved by generalizing the argument of Jack D'Aurizio to the Math Stack Exchange question "Existence of Consecutive Quadratic residues" to the case of F_q.

Examples

			a(5) = 1 because there is one pair of consecutive nonzero squares in the finite field F_q with q = A246655(5) = 7, namely {1, 2}.
a(7) = 1 because there is one pair of consecutive nonzero squares in the finite field F_q with q = A246655(7) = 9, namely {1, 2} (note that 2 = -1 = i^2 in F_9 = F_3(i)).
		

Crossrefs

Cf. A246655, A101455 ({kronecker(-4,n)}), A024698.
A015518(n)-1 and A003463(n)-1 are respectively the number of consecutive nonzero squares in F_{3^n} and in F_{5^n}.

Programs

  • PARI
    lim_A366502(N) = for(n=3, N, if(isprimepower(n), print1((n - kronecker(-4,n))/4 - 1, ", ")))
    
  • Python
    from sympy import primepi, integer_nthroot, kronecker_symbol
    def A366502(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        return ((m:=bisection(f,n,n))-kronecker_symbol(-4,m)>>2)-1 # Chai Wah Wu, Jan 19 2025

A093379 Expansion of x(1-2x-2x^2)/((1+x)(1-2x)(1-3x)).

Original entry on oeis.org

0, 1, 2, 5, 12, 31, 82, 225, 632, 1811, 5262, 15445, 45652, 135591, 404042, 1206665, 3609072, 10805371, 32372422, 97029885, 290914892, 872395151, 2616486402, 7848061105, 23541387112, 70618568931, 211844521982, 635511196325
Offset: 0

Views

Author

Paul Barry, Apr 28 2004

Keywords

Comments

Binomial transform is A085280, with leading zero.

Crossrefs

Cf. A087432.

Programs

  • Mathematica
    CoefficientList[Series[x (1-2x-2x^2)/((1+x)(1-2x)(1-3x)),{x,0,30}],x] (* or *) LinearRecurrence[{4,-1,-6},{0,1,2,5},40] (* Harvey P. Dale, May 10 2019 *)

Formula

a(n)=3^n/12-(-1)^n/12+2^n/3-0^n/3;
a(n)=4a(n-1)-a(n-2)-6a(n-3).
a(n)=A015518(n)/3+A000079(n)/3-0^n/3.

A109191 Triangle read by rows: T(n,k) is number of Grand Motzkin paths of length n having k hills (i.e., ud's starting at level 0). (A Grand Motzkin path is a path in the half-plane x>=0, starting at (0,0), ending at (n,0) and consisting of steps u=(1,1), d=(1,-1) and h=(1,0).).

Original entry on oeis.org

1, 1, 2, 1, 5, 2, 13, 5, 1, 34, 14, 3, 91, 40, 9, 1, 247, 114, 28, 4, 678, 327, 87, 14, 1, 1877, 942, 267, 48, 5, 5233, 2723, 815, 161, 20, 1, 14674, 7892, 2478, 528, 75, 6, 41349, 22924, 7512, 1706, 270, 27, 1, 117001, 66712, 22718, 5452, 941, 110, 7, 332260
Offset: 0

Views

Author

Emeric Deutsch, Jun 21 2005

Keywords

Comments

Row n contains 1 + floor(n/2) terms.
Row sums yield the central trinomial coefficients (A002426).
T(n,0) = A109192(n).
Sum_{k=0..floor(n/2)} k*T(n,k) = A015518(n-1).

Examples

			T(3,1)=2 because we have hud and udh, where u=(1,1),d=(1,-1), h=(1,0).
Triangle begins:
   1;
   1;
   2,  1;
   5,  2;
  13,  5,  1;
  34, 14,  3;
  91, 40,  9,  1;
		

Crossrefs

Programs

  • Maple
    M:=(1-z-sqrt(1-2*z-3*z^2))/2/z^2: G:=1/(1-z+z^2-t*z^2-2*z^2*M): Gser:=simplify(series(G,z=0,16)): P[0]:=1: for n from 1 to 14 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 14 do seq(coeff(t*P[n],t^k),k=1..1+floor(n/2)) od;

Formula

G.f.: 1/(1 - z + z^2 - tz^2 - 2z^2*M), where M = 1 + zM + z^2*M^2 = (1 - z - sqrt(1 - 2z - 3z^2))/(2z^2) is the g.f. of the Motzkin numbers (A001006).

A133443 a(n) = Sum_{k=0..n} C(n,floor(k/2))*(-1)^k*3^(n-k).

Original entry on oeis.org

1, 2, 8, 24, 84, 272, 920, 3040, 10180, 33840, 112968, 376224, 1254696, 4181088, 13939248, 46459584, 154873860, 516229040, 1720795880, 5735921440, 19119861304, 63732624672, 212442552528, 708140901184, 2360471473384, 7868234639072, 26227455730640
Offset: 0

Views

Author

Philippe Deléham, Nov 26 2007, Dec 07 2007

Keywords

Comments

Hankel transform is 4^n. Second binomial transform is A076035.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,Floor[k/2]]*(-1)^k*3^(n-k),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *)

Formula

a(n) = Sum_{k=0..n} A053121(n,k)*A015518(k+1) = (-1)^n*A127362(n). G.f.: (1/sqrt(1-4*x^2))*(1-x*c(x^2))/(1-3*x*c(x^2)), where c(x) is the g.f. of Catalan numbers A000108.
Recurrence: 3*n*a(n) = 2*(5*n-3)*a(n-1) + 4*(3*n-1)*a(n-2) - 40*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2*10^n/3^(n+1). - Vaclav Kotesovec, Oct 20 2012

Extensions

More terms from Vincenzo Librandi, May 25 2013

A164984 Odd (Jacobsthal) triangle.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 5, 9, 5, 1, 11, 23, 19, 7, 1, 21, 57, 61, 33, 9, 1, 43, 135, 179, 127, 51, 11, 1, 85, 313, 493, 433, 229, 73, 13, 1, 171, 711, 1299, 1359, 891, 375, 99, 15, 1, 341, 1593, 3309, 4017, 3141, 1641, 573, 129, 17, 1
Offset: 1

Views

Author

Mark Dols, Sep 03 2009, Sep 06 2009

Keywords

Comments

Alternate diagonal sums give A008619.
Diagonals sums give A097076. - Philippe Deléham, Oct 13 2013

Examples

			1
1,1
3,3,1
5,9,5,1
11,23,19,7,1
21,57,61,33,9,1
Pascal-like triangle based on a right-triangular sum (with the top multiplied by 2): For n=13 a(13)=2*a(3)+a(5)+a(8)+a(9)= 2+3+9+5=19.
		

Crossrefs

Formula

Excel formula: C6=2*C4+C5+B5+B4 with C5=a(1)=1 and C6=a(2)
T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k) + T(n-2,k-1). - Philippe Deléham, Oct 13 2013

A228815 Symmetric triangle, read by rows, related to Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 10, 14, 10, 3, 5, 20, 36, 36, 20, 5, 8, 38, 83, 106, 83, 38, 8, 13, 71, 182, 281, 281, 182, 71, 13, 21, 130, 382, 690, 834, 690, 382, 130, 21, 34, 235, 778, 1606, 2268, 2268, 1606, 778, 235, 34, 55, 420, 1546, 3586, 5780, 6750
Offset: 0

Views

Author

Philippe Deléham, Oct 30 2013

Keywords

Comments

Triangles satisfying the same recurrence: A091533, A091562, A185081, A205575, A209137, A209138.

Examples

			Triangle begins :
0
1, 1
1, 2, 1
2, 5, 5, 2
3, 10, 14, 10, 3
5, 20, 36, 36, 20, 5
8, 38, 83, 106, 83, 38, 8
13, 71, 182, 281, 281, 182, 71, 13
21, 130, 382, 690, 834, 690, 382, 130, 21
34, 235, 778, 1606, 2268, 2268, 1606, 778, 235, 34
55, 420, 1546, 3586, 5780, 6750, 5780, 3586, 1546, 420, 55
		

Crossrefs

Cf. A000045 (1st column), A001629 (2nd column), A008998, A152011, A261055 (3rd column).

Formula

G.f.: x*(1+y)/(1-x-x*y-x^2-x^2*y-x^2*y^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = 0, T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n.
Sum_{k = 0..n} T(n,k)*x^k = A000045(n), 2*A015518(n), 3*A015524(n), 4*A200069(n) for x = 0, 1, 2, 3 respectively.
Sum_{k = 0..floor(n/2)} T(n-k,k) = A008998(n+1).

A247584 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 3*a(n-5) with a(0) = a(1) = a(2) = a(3) = a(4) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 13, 43, 113, 253, 509, 969, 1849, 3719, 8009, 18027, 40897, 91257, 198697, 423777, 894081, 1886011, 4007301, 8594411, 18560081, 40181493, 86872293, 187197193, 402060793, 861827743, 1846685729, 3960390059, 8504658049, 18283290609, 39325827729
Offset: 0

Views

Author

Alexander Samokrutov, Sep 20 2014

Keywords

Comments

a(n)/a(n-1) tends to 2.1486... = 1 + 2^(1/5), the real root of the polynomial x^5 - 5*x^4 + 10*x^3 - 10*x^2 + 5*x - 3.
If x^5 = 2 and n >= 0, then there are unique integers a, b, c, d, g such that (1 + x)^n = a + b*x + c*x^2 + d*x^3 + g*x^4. The coefficient a is a(n) (from A052102). - Alexander Samokrutov, Jul 11 2015
If x=a(n), y=a(n+1), z=a(n+2), s=a(n+3), t=a(n+4) then x, y, z, s, t satisfies Diophantine equation (see link). - Alexander Samokrutov, Jul 11 2015

Crossrefs

Cf. A005531.

Programs

  • Magma
    [n le 5 select 1 else 5*Self(n-1) -10*Self(n-2) +10*Self(n-3) -5*Self(n-4) +3*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Jul 11 2015
    
  • Maple
    m:=50; S:=series( (1-x)^4/(1 -5*x +10*x^2 -10*x^3 +5*x^4 -3*x^5), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 15 2021
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,3}, {1,1,1,1,1}, 50] (* Vincenzo Librandi, Jul 11 2015 *)
  • Maxima
    makelist(sum(2^k*binomial(n,5*k), k, 0, floor(n/5)), n, 0, 50); /* Alexander Samokrutov, Jul 11 2015 */
    
  • PARI
    Vec((1-x)^4/(1-5*x+10*x^2-10*x^3+5*x^4-3*x^5) + O(x^100)) \\ Colin Barker, Sep 22 2014
    
  • Sage
    [sum(2^j*binomial(n, 5*j) for j in (0..n//5)) for n in (0..50)] # G. C. Greubel, Apr 15 2021

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 3*a(n-5).
a(n) = Sum_{k=0...floor(n/5)} (2^k*binomial(n,5*k)). - Alexander Samokrutov, Jul 11 2015
G.f.: (1-x)^4/(1 -5*x +10*x^2 -10*x^3 +5*x^4 -3*x^5). - Colin Barker, Sep 22 2014

A055036 Min[x] composite zero site for sigma(x+6^n) - sigma(x) - 6^n.

Original entry on oeis.org

104, 125, 195, 415, 2743, 2935, 3535, 19735, 22645, 108703, 977353, 1921033, 2523433, 2425175, 4227575, 85969345, 32606935, 224917033, 1362833713, 716210677, 1557843865, 6226853857, 20369543065
Offset: 1

Views

Author

Labos Elemer, Jun 01 2000

Keywords

Examples

			n = 6: d = 6^6 = 46656, a(n) = a(6) = 2935 because sigma(2935) + 46656 = 1 + 5 + 587 + 2935 + 46656 = sigma(2935 + 46656) = sigma(49591) = 1 + 101 + 491 + 49591 = 50184.
		

Crossrefs

Programs

  • Mathematica
    L = {}; Do[i = 1; While[ ! ((Plus @@ Divisors[i + 6^j] == 6^j + Plus @@ Divisors[i]) && ! PrimeQ[i]), i++ ]; L = Append[L, i], {j, 1, 11}]; L (from Vit Planocka)

Formula

a(n) = Min(x) solution for A000203(x+A000400(n)) = A000203(x) + A000400(n) Diophantine equation.

Extensions

One more term from Vit Planocka (planocka(AT)mistral.cz), Sep 23 2003
a(12)-a(23) from Donovan Johnson, Nov 30 2008

A099091 Riordan array (1,2+3x).

Original entry on oeis.org

1, 0, 2, 0, 3, 4, 0, 0, 12, 8, 0, 0, 9, 36, 16, 0, 0, 0, 54, 96, 32, 0, 0, 0, 27, 216, 240, 64, 0, 0, 0, 0, 216, 720, 576, 128, 0, 0, 0, 0, 81, 1080, 2160, 1344, 256, 0, 0, 0, 0, 0, 810, 4320, 6048, 3072, 512, 0, 0, 0, 0, 0, 243, 4860, 15120, 16128, 6912, 1024, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul Barry, Sep 25 2004

Keywords

Comments

Row sums are A015518(n+1). Diagonal sums are A002447. The Riordan array (1,s+tx) defines T(n,k)=binomial(k,n-k)s^k(t/s)^(n-k). The row sums satisfy a(n)=s*a(n-1)+t*a(n-2) and the diagonal sums satisfy a(n)=s*a(n-2)+t*a(n-3).

Examples

			Rows begin
1;
0,2;
0,3,4;
0,0,12,8;
0,0,9,36,16;
		

Formula

Number triangle T(n, k)=binomial(k, n-k)2^k*(3/2)^(n-k) Columns have g.f. (2x+3x^2)^k.
Previous Showing 91-100 of 102 results. Next