cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 76 results. Next

A147655 a(n) is the coefficient of x^n in the polynomial given by Product_{k>=1} (1 + prime(k)*x^k).

Original entry on oeis.org

1, 2, 3, 11, 17, 40, 86, 153, 283, 547, 1069, 1737, 3238, 5340, 9574, 17251, 27897, 45845, 78601, 126725, 207153, 353435, 550422, 881454, 1393870, 2239938, 3473133, 5546789, 8762663, 13341967, 20676253, 31774563, 48248485, 74174759, 111904363, 170184798
Offset: 0

Views

Author

Neil Fernandez, Nov 09 2008

Keywords

Comments

Sum of all squarefree numbers whose prime indices sum to n. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, May 09 2019

Examples

			Form a product from the primes: (1 + 2*x) * (1 + 3*x^2) * (1 + 5*x^3) * ...* (1 + prime(n)*x^n) * ... Multiplying out gives 1 + 2*x + 3*x^2 + 11*x^3 + ..., so the sequence begins 1, 2, 3, 11, ....
From _Petros Hadjicostas_, Apr 10 2020: (Start)
Let f(m) = prime(m). Using the strict partitions of n (see A000009), we get:
a(1) = f(1) = 2,
a(2) = f(2) = 3,
a(3) = f(3) + f(1)*f(2) = 5 + 2*3 = 11,
a(4) = f(4) + f(1)*f(3) = 7 + 2*5 = 17,
a(5) = f(5) + f(1)*f(4) + f(2)*f(3) = 11 + 2*7 + 3*5 = 40,
a(6) = f(6) + f(1)*f(5) + f(2)*f(4) + f(1)*f(2)*f(3) = 13 + 2*11 + 3*7 + 2*3*5 = 86,
a(7) = f(7) + f(1)*f(6) + f(2)*f(5) + f(3)*f(4) + f(1)*f(2)*f(4) = 17 + 2*13 + 3*11 + 5*7 + 2*3*7 = 153. (End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, b(n-i, i-1)*ithprime(i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Sep 05 2014
  • Mathematica
    nn=40;Take[Rest[CoefficientList[Expand[Times@@Table[1+Prime[n]x^n,{n,nn}]],x]],nn] (* Harvey P. Dale, Jul 01 2012 *)

Formula

a(n) = [x^n] Product_{k>=1} 1+prime(k)*x^k. - Alois P. Heinz, Sep 05 2014
a(n) = Sum_{(b_1,...,b_n)} f(1)^b_1 * f(2)^b_2 * ... * f(n)^b_n, where f(m) = prime(m), and the sum is taken over all lists (b_1,...,b_n) with b_j in {0,1} and Sum_{j=1..n} j*b_j = n. - Petros Hadjicostas, Apr 10 2020

Extensions

More terms from Harvey P. Dale, Jul 01 2012
a(0)=1 inserted by Alois P. Heinz, Sep 05 2014
Name edited by Petros Hadjicostas, Apr 10 2020

A339564 Number of ways to choose a distinct factor in a factorization of n (pointed factorizations).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 7, 1, 3, 3, 7, 1, 7, 1, 7, 3, 3, 1, 14, 2, 3, 4, 7, 1, 10, 1, 12, 3, 3, 3, 17, 1, 3, 3, 14, 1, 10, 1, 7, 7, 3, 1, 26, 2, 7, 3, 7, 1, 14, 3, 14, 3, 3, 1, 25, 1, 3, 7, 19, 3, 10, 1, 7, 3, 10, 1, 36, 1, 3, 7, 7, 3, 10, 1, 26, 7, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2021

Keywords

Examples

			The pointed factorizations of n for n = 2, 4, 6, 8, 12, 24, 30:
  ((2))  ((4))    ((6))    ((8))      ((12))     ((24))       ((30))
         ((2)*2)  ((2)*3)  ((2)*4)    ((2)*6)    ((3)*8)      ((5)*6)
                  (2*(3))  (2*(4))    (2*(6))    (3*(8))      (5*(6))
                           ((2)*2*2)  ((3)*4)    ((4)*6)      ((2)*15)
                                      (3*(4))    (4*(6))      (2*(15))
                                      ((2)*2*3)  ((2)*12)     ((3)*10)
                                      (2*2*(3))  (2*(12))     (3*(10))
                                                 ((2)*2*6)    ((2)*3*5)
                                                 (2*2*(6))    (2*(3)*5)
                                                 ((2)*3*4)    (2*3*(5))
                                                 (2*(3)*4)
                                                 (2*3*(4))
                                                 ((2)*2*2*3)
                                                 (2*2*2*(3))
		

Crossrefs

The additive version is A000070 (strict: A015723).
The unpointed version is A001055 (strict: A045778, ordered: A074206, listed: A162247).
Allowing point (1) gives A057567.
Choosing a position instead of value gives A066637.
The ordered additive version is A336875.
A000005 counts divisors.
A001787 count normal multisets with a selected position.
A001792 counts compositions with a selected position.
A006128 counts partitions with a selected position.
A066186 count strongly normal multisets with a selected position.
A254577 counts ordered factorizations with a selected position.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[Union[fac]],{fac,facs[n]}],{n,50}]

Formula

a(n) = A057567(n) - A001055(n).
a(n) = Sum_{d|n, d>1} A001055(n/d).

A341450 Number of strict integer partitions of n that are empty or have smallest part not dividing all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 3, 9, 9, 12, 12, 20, 18, 28, 27, 37, 42, 55, 51, 74, 80, 98, 105, 136, 137, 180, 189, 232, 255, 308, 320, 403, 434, 512, 551, 668, 706, 852, 915, 1067, 1170, 1370, 1453, 1722, 1860, 2145, 2332, 2701, 2899, 3355, 3626, 4144
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2021

Keywords

Comments

Alternative name: Number of strict integer partitions of n with no part dividing all the others.

Examples

			The a(0) = 1 through a(15) = 12 strict partitions (empty columns indicated by dots, 0 represents the empty partition, A..D = 10..13):
  0  .  .  .  .  32   .  43   53   54    64    65    75    76    86     87
                         52        72    73    74    543   85    95     96
                                   432   532   83    732   94    A4     B4
                                               92          A3    B3     D2
                                               542         B2    653    654
                                               632         643   743    753
                                                           652   752    762
                                                           742   932    843
                                                           832   5432   852
                                                                        942
                                                                        A32
                                                                        6432
		

Crossrefs

The complement is counted by A097986 (non-strict: A083710, rank: A339563).
The complement with no 1's is A098965 (non-strict: A083711).
The non-strict version is A338470.
The Heinz numbers of these partitions are A339562 (non-strict: A342193).
The case with greatest part not divisible by all others is A343379.
The case with greatest part divisible by all others is A343380.
A000009 counts strict partitions (non-strict: A000041).
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
Sequences with similar formulas: A024994, A047966, A047968, A168111.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]

Formula

a(n > 0) = A000009(n) - Sum_{d|n} A025147(d-1).

A090858 Number of partitions of n such that there is exactly one part which occurs twice, while all other parts occur only once.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 2, 4, 6, 7, 8, 13, 15, 21, 25, 30, 39, 50, 58, 74, 89, 105, 129, 156, 185, 221, 264, 309, 366, 433, 505, 593, 696, 805, 941, 1090, 1258, 1458, 1684, 1933, 2225, 2555, 2922, 3346, 3823, 4349, 4961, 5644, 6402, 7267, 8234, 9309, 10525, 11886, 13393
Offset: 0

Views

Author

Vladeta Jovovic, Feb 12 2004

Keywords

Comments

Number of solutions (p(1),p(2),...,p(n)), p(i)>=0,i=1..n, to p(1)+2*p(2)+...+n*p(n)=n such that |{i: p(i)<>0}| = p(1)+p(2)+...+p(n)-1.
Also number of partitions of n such that if k is the largest part, then, with exactly one exception, all the integers 1,2,...,k occur as parts. Example: a(7)=4 because we have [4,2,1], [3,3,1], [3,2,2] and [3,1,1,1,1]. - Emeric Deutsch, Apr 18 2006

Examples

			a(7) = 4 because we have 4 such partitions of 7: [1,1,2,3], [1,1,5], [2,2,3], [1,3,3].
From _Gus Wiseman_, Apr 19 2019: (Start)
The a(2) = 1 through a(11) = 13 partitions described in the name are the following (empty columns not shown). The Heinz numbers of these partitions are given by A060687.
  (11)  (22)   (221)  (33)   (322)   (44)    (441)   (55)    (443)
        (211)  (311)  (411)  (331)   (332)   (522)   (433)   (533)
                             (511)   (422)   (711)   (442)   (551)
                             (3211)  (611)   (3321)  (622)   (722)
                                     (3221)  (4221)  (811)   (911)
                                     (4211)  (4311)  (5221)  (4322)
                                             (5211)  (5311)  (4331)
                                                     (6211)  (4421)
                                                             (5411)
                                                             (6221)
                                                             (6311)
                                                             (7211)
                                                             (43211)
The a(2) = 1 through a(10) = 8 partitions described in Emeric Deutsch's comment are the following (empty columns not shown). The Heinz numbers of these partitions are given by A325284.
  (2)  (22)  (32)   (222)   (322)    (332)     (432)      (3322)
       (31)  (311)  (3111)  (331)    (431)     (3222)     (3331)
                            (421)    (2222)    (4221)     (22222)
                            (31111)  (3311)    (4311)     (42211)
                                     (4211)    (33111)    (43111)
                                     (311111)  (42111)    (331111)
                                               (3111111)  (421111)
                                                          (31111111)
(End)
		

Crossrefs

Programs

  • Maple
    g:=sum(x^(k*(k+1)/2)*((1-x^k)/x^(k-1)/(1-x)-k)/product(1-x^i,i=1..k),k=1..15): gser:=series(g,x=0,64): seq(coeff(gser,x,n),n=1..54); # Emeric Deutsch, Apr 18 2006
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n>i*(i+3-2*t)/2, 0,
         `if`(n=0, t, b(n, i-1, t)+`if`(i>n, 0, b(n-i, i-1, t)+
         `if`(t=1 or 2*i>n, 0, b(n-2*i, i-1, 1)))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2015
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 3 - 2*t)/2, 0, If[n == 0, t, b[n, i - 1, t] + If[i > n, 0,  b[n - i, i - 1, t] + If[t == 1 || 2*i > n, 0, b[n - 2*i, i - 1, 1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 100} ] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Length[#]-Length[Union[#]]==1&]],{n,0,30}] (* Gus Wiseman, Apr 19 2019 *)
  • PARI
    alist(n)=concat([0,0],Vec(sum(k=1,n\2,(x^(2*k)+x*O(x^n))/(1+x^k)*prod(j=1,n-2*k,1+x^j+x*O(x^n))))) \\ Franklin T. Adams-Watters, Nov 02 2015

Formula

G.f.: Sum_{k>0} x^(2*k)/(1+x^k) * Product_{k>0} (1+x^k). Convolution of 1-A048272(n) and A000009(n). a(n) = A036469(n) - A015723(n).
G.f.: sum(x^(k(k+1)/2)[(1-x^k)/x^(k-1)/(1-x)-k]/product(1-x^i,i=1..k), k=1..infinity). - Emeric Deutsch, Apr 18 2006
a(n) ~ c * exp(Pi*sqrt(n/3)) / n^(1/4), where c = 3^(1/4) * (1 - log(2)) / (2*Pi) = 0.064273294789... - Vaclav Kotesovec, May 24 2018

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 26 2004
a(0) added by Franklin T. Adams-Watters, Nov 02 2015

A338470 Number of integer partitions of n with no part dividing all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 3, 2, 5, 5, 13, 7, 23, 21, 33, 35, 65, 55, 104, 97, 151, 166, 252, 235, 377, 399, 549, 591, 846, 858, 1237, 1311, 1749, 1934, 2556, 2705, 3659, 3991, 5090, 5608, 7244, 7841, 10086, 11075, 13794, 15420, 19195, 21003, 26240, 29089, 35483
Offset: 0

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

Alternative name: Number of integer partitions of n that are empty or have smallest part not dividing all the others.

Examples

			The a(5) = 1 through a(12) = 7 partitions (empty column indicated by dot):
  (32)  .  (43)   (53)   (54)    (64)    (65)     (75)
           (52)   (332)  (72)    (73)    (74)     (543)
           (322)         (432)   (433)   (83)     (552)
                         (522)   (532)   (92)     (732)
                         (3222)  (3322)  (443)    (4332)
                                         (533)    (5322)
                                         (542)    (33222)
                                         (632)
                                         (722)
                                         (3332)
                                         (4322)
                                         (5222)
                                         (32222)
		

Crossrefs

The complement is A083710 (strict: A097986).
The strict case is A341450.
The Heinz numbers of these partitions are A342193.
The dual version is A343341.
The case with maximum part not divisible by all the others is A343342.
The case with maximum part divisible by all the others is A343344.
A000005 counts divisors.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A001787 count normal multisets with a selected position.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A276024 counts positive subset sums.
Sequences with similar formulas: A024994, A047966, A047968, A168111.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]
    (* Second program: *)
    a[n_] := If[n == 0, 1, PartitionsP[n] - Sum[PartitionsP[d-1], {d, Divisors[n]}]];
    a /@ Range[0, 50] (* Jean-François Alcover, May 09 2021, after Andrew Howroyd *)
  • PARI
    a(n)={numbpart(n) - if(n, sumdiv(n, d, numbpart(d-1)))} \\ Andrew Howroyd, Mar 25 2021

Formula

a(n) = A000041(n) - Sum_{d|n} A000041(d-1) for n > 0. - Andrew Howroyd, Mar 25 2021

A118457 Table of partitions of n into distinct parts, in Mathematica ordering.

Original entry on oeis.org

1, 2, 3, 2, 1, 4, 3, 1, 5, 4, 1, 3, 2, 6, 5, 1, 4, 2, 3, 2, 1, 7, 6, 1, 5, 2, 4, 3, 4, 2, 1, 8, 7, 1, 6, 2, 5, 3, 5, 2, 1, 4, 3, 1, 9, 8, 1, 7, 2, 6, 3, 6, 2, 1, 5, 4, 5, 3, 1, 4, 3, 2, 10, 9, 1, 8, 2, 7, 3, 7, 2, 1, 6, 4, 6, 3, 1, 5, 4, 1, 5, 3, 2, 4, 3, 2, 1, 11, 10, 1, 9, 2, 8, 3, 8, 2, 1, 7, 4, 7, 3, 1, 6, 5
Offset: 1

Views

Author

Keywords

Comments

Reverse lexicographic order where the partitions are reprepresented as (weakly) decreasing lists of parts. [Joerg Arndt, Jan 25 2013]

Examples

			The partitions of 5 into distinct parts are [5], [4,1] and [3,2], so row 5 is 5,4,1,3,2.
1;
2;
3; 2,1;
4; 3,1;
5; 4,1; 3,2;
6; 5,1; 4,2; 3,2,1;
7; 6,1; 5,2; 4,3; 4,2,1;
8; 7,1; 6,2; 5,3; 5,2,1; 4,3,1;
9; 8,1; 7,2; 6,3; 6,2,1; 5,4; 5,3,1; 4,3,2;
10; 9,1; 8,2; 7,3; 7,2,1; 6,4; 6,3,1; 5,4,1; 5,3,2; 4,3,2,1;
11; 10,1; 9,2; 8,3; 8,2,1; 7,4; 7,3,1; 6,5; 6,4,1; 6,3,2; 5,4,2; 5,3,2,1;
		

Crossrefs

Cf. A026793, A118459 (partition lengths), A015723 (total row lengths), A080577, A000009, A246688.

Programs

  • Mathematica
    d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@ #] == 1 &]; Flatten[Table[d[n], {n, 15}]] (* Clark Kimberling, Mar 11 2012 *)
  • SageMath
    def StrictPartitions(n): return [partition for partition in Partitions(n) if Set(partition.to_exp()).issubset(Set([0,1]))]
    def A118457row(n): return [p for parts in StrictPartitions(n) for p in parts]
    for n in (1..9): print(A118457row(n)) # Peter Luschny, Apr 11 2020

A246688 Triangle in which n-th row lists lexicographically ordered increasing lists of parts of all partitions of n into distinct parts.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 4, 1, 4, 2, 3, 5, 1, 2, 3, 1, 5, 2, 4, 6, 1, 2, 4, 1, 6, 2, 5, 3, 4, 7, 1, 2, 5, 1, 3, 4, 1, 7, 2, 6, 3, 5, 8, 1, 2, 6, 1, 3, 5, 1, 8, 2, 3, 4, 2, 7, 3, 6, 4, 5, 9, 1, 2, 3, 4, 1, 2, 7, 1, 3, 6, 1, 4, 5, 1, 9, 2, 3, 5, 2, 8, 3, 7, 4, 6, 10
Offset: 1

Views

Author

Alois P. Heinz, Sep 01 2014

Keywords

Examples

			Triangle begins:
  [1];
  [2];
  [1,2], [3];
  [1,3], [4];
  [1,4], [2,3], [5];
  [1,2,3], [1,5], [2,4], [6];
  [1,2,4], [1,6], [2,5], [3,4], [7];
  [1,2,5], [1,3,4], [1,7], [2,6], [3,5], [8];
  [1,2,6], [1,3,5], [1,8], [2,3,4], [2,7], [3,6], [4,5], [9];
  [1,2,3,4], [1,2,7], [1,3,6], [1,4,5], [1,9], [2,3,5], [2,8], [3,7], [4,6], [10];
		

Crossrefs

Row lengths are A015723.
Row sums give A066189.
Last elements of rows are A000027.

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [[]], `if`(i>n, [],
          [map(x->[i, x[]], b(n-i, i+1))[], b(n, i+1)[]]))
        end:
    T:= n-> map(x-> x[], b(n, 1))[]:
    seq(T(n), n=1..12);
  • Mathematica
    T[n_] := Module[{ip, lg}, ip = Reverse /@ Select[ IntegerPartitions[n], # == DeleteDuplicates[#]&]; lg = Length /@ ip // Max; SortBy[PadRight[#, lg]&][ip]];
    Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Oct 21 2022 *)

A343341 Number of integer partitions of n with no part divisible by all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 4, 6, 11, 16, 28, 36, 58, 79, 111, 149, 209, 270, 368, 472, 618, 793, 1030, 1292, 1653, 2073, 2608, 3241, 4051, 4982, 6176, 7566, 9285, 11320, 13805, 16709, 20275, 24454, 29477, 35380, 42472, 50741, 60648, 72199, 85887, 101906, 120816
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2021

Keywords

Comments

Alternative name: Number of integer partitions of n that are either empty, or have greatest part not divisible by all the others.

Examples

			The a(5) = 1 through a(10) = 16 partitions:
  (32)  (321)  (43)    (53)     (54)      (64)
               (52)    (332)    (72)      (73)
               (322)   (431)    (432)     (433)
               (3211)  (521)    (522)     (532)
                       (3221)   (531)     (541)
                       (32111)  (3222)    (721)
                                (3321)    (3322)
                                (4311)    (4321)
                                (5211)    (5221)
                                (32211)   (5311)
                                (321111)  (32221)
                                          (33211)
                                          (43111)
                                          (52111)
                                          (322111)
                                          (3211111)
		

Crossrefs

The complement is counted by A130689.
The dual version is A338470.
The Heinz numbers of these partitions are A343337.
The strict case is A343377.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]

A026793 Juxtaposed partitions of 1,2,3,... into distinct parts, ordered by number of terms and then lexicographically.

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 1, 3, 5, 1, 4, 2, 3, 6, 1, 5, 2, 4, 1, 2, 3, 7, 1, 6, 2, 5, 3, 4, 1, 2, 4, 8, 1, 7, 2, 6, 3, 5, 1, 2, 5, 1, 3, 4, 9, 1, 8, 2, 7, 3, 6, 4, 5, 1, 2, 6, 1, 3, 5, 2, 3, 4, 10, 1, 9, 2, 8, 3, 7, 4, 6, 1, 2, 7, 1, 3, 6, 1, 4, 5, 2, 3, 5, 1, 2, 3, 4, 11, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 1, 2, 8, 1, 3, 7, 1, 4, 6, 2, 3, 6, 2, 4
Offset: 1

Views

Author

Keywords

Comments

This is the Abramowitz and Stegun ordering. - Franklin T. Adams-Watters, Apr 28 2006

Examples

			The partitions of 5 into distinct parts are [5], [1,4] and [2,3], so row 5 is 5,1,4,2,3.
Triangle begins:
[1];
[2];
[3], [1,2];
[4], [1,3];
[5], [1,4], [2,3];
[6], [1,5], [2,4], [1,2,3];
[7], [1,6], [2,5], [3,4], [1,2,4];
[8], [1,7], [2,6], [3,5], [1,2,5], [1,3,4];
[9], [1,8], [2,7], [3,6], [4,5], [1,2,6], [1,3,5], [2,3,4];
		

Crossrefs

Cf. A118457, A118458 (partition lengths), A015723 (total row lengths), A036036, A000009, A246688.

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [[]], `if`(i>n, [],
          [map(x->[i, x[]], b(n-i, i+1))[], b(n, i+1)[]]))
        end:
    T:= n-> map(x-> x[], sort(b(n, 1)))[]:
    seq(T(n), n=1..12);  # Alois P. Heinz, Jun 22 2020
  • Mathematica
    Array[SortBy[Map[Reverse, Select[IntegerPartitions[#], UnsameQ @@ # &]], Length] &, 12] // Flatten (* Michael De Vlieger, Jun 22 2020 *)
    b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i>n, {}, Join[Prepend[#, i]& /@ b[n-i, i+1], b[n, i+1]]]];
    T[n_] := Sort[b[n, 1]];
    Array[T, 12] // Flatten (* Jean-François Alcover, Jun 09 2021, after Alois P. Heinz *)

Extensions

Incorrect program removed by Georg Fischer, Jun 22 2020

A342193 Numbers with no prime index dividing all the other prime indices.

Original entry on oeis.org

1, 15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 91, 93, 95, 99, 105, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 195, 201, 203, 205, 207, 209, 215, 217, 219, 221, 225, 231, 245, 247, 249, 253, 255, 265, 275, 279, 285, 287, 291, 295, 297, 299
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2021

Keywords

Comments

Alternative name: 1 and numbers with smallest prime index not dividing all the other prime indices.
First differs from A339562 in having 45.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also 1 and Heinz numbers of integer partitions with smallest part not dividing all the others (counted by A338470). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}         105: {2,3,4}      201: {2,19}
     15: {2,3}      119: {4,7}        203: {4,10}
     33: {2,5}      123: {2,13}       205: {3,13}
     35: {3,4}      135: {2,2,2,3}    207: {2,2,9}
     45: {2,2,3}    141: {2,15}       209: {5,8}
     51: {2,7}      143: {5,6}        215: {3,14}
     55: {3,5}      145: {3,10}       217: {4,11}
     69: {2,9}      153: {2,2,7}      219: {2,21}
     75: {2,3,3}    155: {3,11}       221: {6,7}
     77: {4,5}      161: {4,9}        225: {2,2,3,3}
     85: {3,7}      165: {2,3,5}      231: {2,4,5}
     91: {4,6}      175: {3,3,4}      245: {3,4,4}
     93: {2,11}     177: {2,17}       247: {6,8}
     95: {3,8}      187: {5,7}        249: {2,23}
     99: {2,2,5}    195: {2,3,6}      253: {5,9}
		

Crossrefs

The complement is counted by A083710 (strict: A097986).
The complement with no 1's is A083711 (strict: A098965).
These partitions are counted by A338470 (strict: A341450).
The squarefree case is A339562, with squarefree complement A339563.
The case with maximum prime index not divisible by all others is A343338.
The case with maximum prime index divisible by all others is A343339.
A000005 counts divisors.
A000070 counts partitions with a selected part.
A001221 counts distinct prime factors.
A006128 counts partitions with a selected position (strict: A015723).
A056239 adds up prime indices, row sums of A112798.
A299702 lists Heinz numbers of knapsack partitions.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Select[Range[100],#==1||With[{p=PrimePi/@First/@FactorInteger[#]},!And@@IntegerQ/@(p/Min@@p)]&]
Previous Showing 11-20 of 76 results. Next