A277554
Positive integers n such that 7^n == 3 (mod n).
Original entry on oeis.org
1, 2, 46, 2227, 6684830083, 12827743861, 151652531182, 155657642297, 3102126273955, 11006109076099, 50473807426174, 172794904196354
Offset: 1
A277371
Positive integers k that divide 7^k + 3.
Original entry on oeis.org
1, 2, 4, 5, 26, 205, 2404, 88171, 1785134, 2010899, 58796834, 639723359, 657788549, 2050134685, 4809019972, 6114530474, 11931055777, 1292089439947, 1294667166242, 4586221808305
Offset: 1
7^5 + 3 = 16810 = 5 * 3362, so 5 is a term.
-
Select[Range[10000], Divisible[7^# + 3, #] &] (* Alonso del Arte, Oct 11 2016 *)
Join[{1,2},Select[Range[21*10^5],PowerMod[7,#,#]==#-3&]] (* The program generates the first 10 terms of the sequence. *) (* Harvey P. Dale, Sep 21 2022 *)
-
is(n) = Mod(7, n)^n==-3 \\ Felix Fröhlich, Oct 14 2016
Comments