cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A277554 Positive integers n such that 7^n == 3 (mod n).

Original entry on oeis.org

1, 2, 46, 2227, 6684830083, 12827743861, 151652531182, 155657642297, 3102126273955, 11006109076099, 50473807426174, 172794904196354
Offset: 1

Views

Author

Max Alekseyev, Oct 19 2016

Keywords

Comments

No other terms below 10^15.

Crossrefs

Cf. Solutions to 7^n == k (mod n): A277371 (k=-3), A277370 (k=-2), A015954 (k=-1), A067947 (k=1), A277401 (k=2).
Cf. Solutions to b^n == 3 (mod n): A050259 (b=2), A130422 (b=4), A123061 (b=5), A116629 (b=13).

Programs

A277371 Positive integers k that divide 7^k + 3.

Original entry on oeis.org

1, 2, 4, 5, 26, 205, 2404, 88171, 1785134, 2010899, 58796834, 639723359, 657788549, 2050134685, 4809019972, 6114530474, 11931055777, 1292089439947, 1294667166242, 4586221808305
Offset: 1

Views

Author

Seiichi Manyama, Oct 11 2016

Keywords

Comments

No other terms below 10^15. Some larger terms: 68363072121992414, 95409505835353571, 1579273736555455916822694118995172, 5481414795965035698701145369881812, 14905708205837180834697194210878924, 45415365018055454586462673640490785681840279, 147329898999183698422689397719859437775766016038732177717811807964. - Max Alekseyev, Oct 18 2016

Examples

			7^5 + 3 = 16810 = 5 * 3362, so 5 is a term.
		

Crossrefs

Cf. A066438.
Cf. Solutions to 7^n == k (mod n): this sequence (k=-3), A277370 (k=-2), A015954 (k=-1), A067947 (k=1), A277401 (k=2), A277554 (k=3).

Programs

  • Mathematica
    Select[Range[10000], Divisible[7^# + 3, #] &] (* Alonso del Arte, Oct 11 2016 *)
    Join[{1,2},Select[Range[21*10^5],PowerMod[7,#,#]==#-3&]] (* The program generates the first 10 terms of the sequence. *) (* Harvey P. Dale, Sep 21 2022 *)
  • PARI
    is(n) = Mod(7, n)^n==-3 \\ Felix Fröhlich, Oct 14 2016

Formula

A066438(a(n)) = a(n) - 3 for n > 2.

Extensions

a(15)-a(20) from Max Alekseyev, Oct 18 2016
Previous Showing 11-12 of 12 results.