cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A175840 Mirror image of Nicomachus' table: T(n,k) = 3^(n-k)*2^k for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 3, 2, 9, 6, 4, 27, 18, 12, 8, 81, 54, 36, 24, 16, 243, 162, 108, 72, 48, 32, 729, 486, 324, 216, 144, 96, 64, 2187, 1458, 972, 648, 432, 288, 192, 128, 6561, 4374, 2916, 1944, 1296, 864, 576, 384, 256, 19683, 13122, 8748, 5832, 3888, 2592, 1728, 1152, 768, 512
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010, Jul 13 2011, Jun 03 2012

Keywords

Comments

Lenstra calls these numbers the harmonic numbers of Philippe de Vitry (1291-1361). De Vitry wanted to find pairs of harmonic numbers that differ by one. Levi ben Gerson, also known as Gersonides, proved in 1342 that there are only four pairs with this property of the form 2^n*3^m. See also Peterson’s story ‘Medieval Harmony’.
This triangle is the mirror image of Nicomachus' table A036561. The triangle sums, see the crossrefs, mirror those of A036561. See A180662 for the definitions of these sums.

Examples

			1;
3, 2;
9, 6, 4;
27, 18, 12, 8;
81, 54, 36, 24, 16;
243, 162, 108, 72, 48, 32;
		

Crossrefs

Triangle sums: A001047 (Row1), A015441 (Row2), A016133 (Kn1 & Kn4), A005061 (Kn2 & Kn3), A016153 (Fi1& Fi2), A180844 (Ca1 & Ca4), A016140 (Ca2, Ca3), A180846 (Gi1 & Gi4), A180845 (Gi2 & Gi3), A016185 (Ze1 & Ze4), A180847 (Ze2 & Ze3).

Programs

  • Haskell
    a175840 n k = a175840_tabf !! n !! k
    a175840_row n = a175840_tabf !! n
    a175840_tabf = iterate (\xs@(x:_) -> x * 3 : map (* 2) xs) [1]
    -- Reinhard Zumkeller, Jun 08 2013
  • Maple
    A175840 := proc(n,k): 3^(n-k)*2^k end: seq(seq(A175840(n,k),k=0..n),n=0..9);
  • Mathematica
    Flatten[Table[3^(n-k) 2^k,{n,0,10},{k,0,n}]] (* Harvey P. Dale, May 08 2013 *)

Formula

T(n,k) = 3^(n-k)*2^k for n>=0 and 0<=k<=n.
T(n,n-k) = T(n,n-k+1) + T(n-1,n-k) for n>=1 and 1<=k<=n with T(n,n) = 2^n for n>=0.

A102902 a(n) = 9*a(n-1) - 16*a(n-2), with a(0) = 1, a(1) = 9.

Original entry on oeis.org

1, 9, 65, 441, 2929, 19305, 126881, 833049, 5467345, 35877321, 235418369, 1544728185, 10135859761, 66507086889, 436390025825, 2863396842201, 18788331166609, 123280631024265, 808912380552641, 5307721328585529
Offset: 0

Views

Author

Paul Barry, Jan 17 2005

Keywords

Crossrefs

Programs

  • Magma
    [4^n*Evaluate(ChebyshevSecond(n+1), 9/8): n in [0..30]]; // G. C. Greubel, Dec 09 2022
  • Mathematica
    LinearRecurrence[{9,-16},{1,9},20] (* Harvey P. Dale, Jul 28 2016 *)
  • SageMath
    [lucas_number1(n,9,16) for n in range(1, 21)] # Zerinvary Lajos, Apr 23 2009
    

Formula

G.f.: 1/(1-9*x+16*x^2).
a(n) = Sum_{k=0..n} binomial(2*n-k+1, k)*4^k.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-16)^k*9^(n-2*k).
a(n) = 4^n * ChebyshevU(n, 9/8). - G. C. Greubel, Dec 09 2022
From Peter Bala, Jul 23 2025: (Start)
a(n) := ((9 + sqrt(17))^(n+1) - (9 - sqrt(17))^(n+1))/(2^(n+1)*sqrt(17)).
The following products telescope:
Product_{k >= 1} 1 + 4^k/a(k) = (1 + sqrt(17))/2.
Product_{k >= 1} 1 - 4^k/a(k) = (1 + sqrt(17))/18.
Product_{k >= 1} 1 + (-4)^k/a(k) = (17 + sqrt(17))/34.
Product_{k >= 1} 1 - (-4)^k/a(k) = (17 + sqrt(17))/18. (End)

A102765 Array read by antidiagonals: T(n, k) = ((n+4)^k-(n-1)^k)/5.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 5, 13, 0, 1, 7, 25, 51, 0, 1, 9, 43, 125, 205, 0, 1, 11, 67, 259, 625, 819, 0, 1, 13, 97, 477, 1555, 3125, 3277, 0, 1, 15, 133, 803, 3355, 9331, 15625, 13107, 0, 1, 17, 175, 1261, 6505, 23517, 55987, 78125, 52429, 0, 1, 19, 223, 1875, 11605
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Feb 10 2005

Keywords

Comments

Consider a 5x5 matrix M =
[n, 1, 1, 1, 1]
[1, n, 1, 1, 1]
[1, 1, n, 1, 1]
[1, 1, 1, n, 1]
[1, 1, 1, 1, n].
The n-th row of the array contains the values of the non diagonal elements of M^k, k=0,1,.... (Corresponding diagonal entry = non diagonal entry + (n-1)^k.)
For row r we have polynomial ((r+4)^n-(r-1)^n)/5. Corresponding g.f.s: x/((1-(r-1)x)(1-(r+4)x))
If r(n) denotes a row sequence, r(n+1)/r(n) converges to n+4.
Triangle T(n, k) = (4^(n-k-1)-(-1)^(n-k-1))/5*(binomial(k+(n-k-1),n-k-1)) gives coefficients for polynomials for the columns of the array. First four polynomial are:
1
3 + 2*k
13 + 9*k + 3*k^2
51 + 52*k + 18*k^2 + 4*k^3
...

Examples

			Array begins:
  0, 1,  3, 13,  51,  205, ...
  0, 1,  5, 25, 125,  625, ...
  0, 1,  7, 43, 259, 1555, ...
  0, 1,  9, 67, 477, 3355, ...
  0, 1, 11, 97, 803, 6505, ...
  ...
		

Crossrefs

Cf. A015521 (for n=0), A000351 (for n=1), A003464 (for n=2), A016130 (for n=3), A016140 (for n=4), A016153 (for n=5), A016164 (for n=6), A016174 (for n=7), A016184 (for n=8), A015441 (for n=-1), A091005 (for n=-2).

Programs

  • PARI
    MM(n,N)=local(M);M=matrix(n,n);for(i=1,n, for(j=1,n,if(i==j,M[i,j]=N,M[i,j]=1)));M
    for(k=0,10, for(i=0,10,print1((MM(5,k)^i)[1,2],","));print())
    
  • PARI
    p(n,k)=((n+4)^k-(n-1)^k)/5
    for(k=0,10, for(i=0,10,print1(p(k,i),","));print())
    
  • PARI
    for(k=0,10, for(i=0,10,print1(polcoeff(x/((1-(k-1)*x)*(1-(k+4)*x)),i),","));print())
Previous Showing 11-13 of 13 results.