cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A171647 a(1) = 1; for n > 1, a(n) = 2*a(n-1) if n is even, a(n) = ((n+1)/(n-1))*a(n-1) if n is odd.

Original entry on oeis.org

1, 2, 4, 8, 12, 24, 32, 64, 80, 160, 192, 384, 448, 896, 1024, 2048, 2304, 4608, 5120, 10240, 11264, 22528, 24576, 49152, 53248, 106496, 114688, 229376, 245760, 491520, 524288, 1048576, 1114112, 2228224, 2359296, 4718592, 4980736, 9961472
Offset: 1

Views

Author

Gary W. Adamson, Dec 13 2009

Keywords

Comments

a(n) is the number of subsets of {1,2,...,n} that contain exactly one odd number. For example, for n=5, a(5)=12 and the 12 subsets are {1}, {3}, {5}, {1,2}, {1,4}, {2,3}, {2,5}, {3,4}, {4,5}, {1,2,4}, {2,3,4}, {2,4,5}. - Enrique Navarrete, Dec 15 2019
2*a(n-1) is the number of subsets of {1,2,...,n} that contain exactly one even number. For example, for n=5, 2*a(4)=16 and the 16 subsets are {2}, {4}, {1,2}, {1,4}, {2,3}, {2,5}, {3,4}, {4,5}, {1,2,3}, {1,2,5}, {1,3,4}, {1,4,5}, {2,3,5}, {3,4,5}, {1,2,3,5}, {1,3,4,5}. - Enrique Navarrete, Dec 16 2019

Examples

			a(6) = 2*a(5) = 2*12 = 24;
a(7) = (8/6)*a(6) = (4/3)*24 = 32.
		

Crossrefs

Cf. A001787, A036289 (bisections).
Cf. A016631.

Programs

  • Magma
    [ n eq 1 select 1 else IsEven(n) select 2*Self(n-1) else ((n+1)/(n-1))*Self(n-1): n in [1..40] ];
  • Mathematica
    a[n_] := If[ OddQ@ n, (n + 1)/(n - 1) a[n - 1] , 2 a[n - 1]]; a[1] = 1; Array[a, 38]
    LinearRecurrence[{0,4,0,-4},{1,2,4,8},40] (* Harvey P. Dale, Jan 14 2015 *)

Formula

From R. J. Mathar, Dec 06 2010: (Start)
a(n) = 4*a(n-2) - 4*a(n-4).
G.f.: x*(1+2*x)/(-1+2*x^2)^2. (End)
a(n) = (2*n - (-1)^n+1)*2^((2*n + (-1)^n - 9)/4). - Bruno Berselli, Dec 07 2010
G.f.: G(0), where G(k) = 1 + 2*x*(k+1)/(k + 1 - x*(k+1)*(k+2)/(x*(k+2) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 27 2013
Sum_{n>=1} 1/a(n) = 3*log(2) (A016631). - Amiram Eldar, Aug 27 2022

A229857 Round(2^(m-n-2)/(m*log(8))), where m = 2^n - n - 2.

Original entry on oeis.org

5043, 2417158053779, 5245728941618725066052704993134, 215872416866954281715178071724040762825421437510476267629647193878371
Offset: 5

Views

Author

Arkadiusz Wesolowski, Oct 01 2013

Keywords

Comments

a(9) has 145 digits and is too large to include.
Conjecture: a(n) < f(n) = number of primes of the form k*2^(n+2) + 1 with k odd that exist between a = 2^(n+2) + 1 and b = floor((2^(2^n) + 1)/(3*2^(n+2) + 1)).
For comparison, f(5) = 5746.
If the extended Riemann hypothesis is true, then for every fixed epsilon > 0, f(n) = Li(b)/(a - 1) + O(b^(1/2 + epsilon)), where Li(b) = integral(2..b, dt/log(t)).

References

  • P. Borwein, S. Choi, B. Rooney and A. Weirathmueller, The Riemann Hypothesis: A Resource for the Aficionado and Virtuoso Alike, Springer, Berlin, 2008, pp. 57-58.

Crossrefs

A069975 a(n) = n*(16*n^2 - 1).

Original entry on oeis.org

15, 126, 429, 1020, 1995, 3450, 5481, 8184, 11655, 15990, 21285, 27636, 35139, 43890, 53985, 65520, 78591, 93294, 109725, 127980, 148155, 170346, 194649, 221160, 249975, 281190, 314901, 351204, 390195, 431970, 476625, 524256, 574959, 628830, 685965, 746460
Offset: 1

Views

Author

Benoit Cloitre, Apr 30 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n(16n^2-1),{n,40}] (* Harvey P. Dale, Dec 17 2018 *)
  • PARI
    a(n) = n*(16*n^2-1); \\ Michel Marcus, Nov 25 2013
    
  • PARI
    my(x='x+O('x^37)); Vec(3*x*(5+22*x+5*x^2)/(1-x)^4) \\ Elmo R. Oliveira, Sep 05 2025

Formula

Sum_{n>=1} 1/a(n) = 3*log(2) - 2 = A016631 - 2. (Ramanujan)
Sum_{n>=1} (-1)^(n+1)/a(n) = 2 - log(2) + sqrt(2)*log(sqrt(2)-1). - Amiram Eldar, Jun 24 2022
From Elmo R. Oliveira, Sep 05 2025: (Start)
G.f.: 3*x*(5 + 22*x + 5*x^2)/(x-1)^4.
E.g.f.: x*(15 + 48*x + 16*x^2)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4.
a(n) = A069140(n)/4. (End)

Extensions

More terms from Elmo R. Oliveira, Sep 05 2025

A161174 Decimal expansion of the natural logarithm of 63/8.

Original entry on oeis.org

2, 0, 6, 3, 6, 9, 3, 1, 8, 4, 7, 1, 1, 6, 9, 6, 7, 5, 9, 6, 4, 4, 1, 4, 6, 8, 5, 2, 9, 1, 3, 7, 0, 1, 4, 3, 4, 7, 0, 5, 5, 6, 5, 4, 4, 2, 1, 4, 6, 5, 9, 4, 3, 2, 9, 5, 6, 6, 7, 3, 8, 7, 8, 8, 7, 3, 2, 3, 8, 7, 5, 8, 3, 2, 8, 0, 2, 0, 3, 0, 5, 4, 7, 1, 7, 3, 0, 0, 0, 2, 7, 2, 2, 6, 0, 7, 9, 6, 4, 1, 9, 4, 2, 9, 9
Offset: 1

Views

Author

Brock Ericson (narutofan909(AT)cox.net), Jun 04 2009

Keywords

Examples

			2.0636931...
		

Programs

Formula

Log(63/8).
Equals A016686 minus A016631. - R. J. Mathar, Jun 16 2009

Extensions

Leading 2 inserted, and more digits and keyword:cons added by R. J. Mathar, Jun 26 2009

A382821 Decimal expansion of (3/2) * (log(3) - 1).

Original entry on oeis.org

1, 4, 7, 9, 1, 8, 4, 3, 3, 0, 0, 2, 1, 6, 4, 5, 3, 7, 0, 9, 2, 8, 6, 7, 8, 5, 5, 3, 8, 3, 7, 8, 8, 5, 5, 6, 9, 7, 1, 2, 3, 5, 8, 3, 6, 7, 3, 4, 1, 2, 4, 1, 7, 7, 6, 0, 2, 0, 4, 1, 5, 0, 0, 4, 5, 6, 2, 4, 1, 4, 3, 9, 8, 2, 7, 9, 1, 3, 4, 5, 0, 3, 1, 0, 4, 2, 3
Offset: 0

Views

Author

Sean A. Irvine, Apr 05 2025

Keywords

Examples

			0.147918433002164537092867855...
		

Crossrefs

Essentially the same as A093064.

Programs

  • Mathematica
    RealDigits[(3/2) * (Log[3] - 1), 10, 120][[1]] (* Amiram Eldar, Aug 08 2025 *)

Formula

Equals Sum_{k>=1} 1/(k*(9*k^2-1)).
Equals Sum_{k>=1} zeta(2*k+1)/9^k. - Amiram Eldar, Aug 08 2025
Previous Showing 11-15 of 15 results.