cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 63 results. Next

A094884 Decimal expansion of phi/sqrt(2), where phi = (1+sqrt(5))/2.

Original entry on oeis.org

1, 1, 4, 4, 1, 2, 2, 8, 0, 5, 6, 3, 5, 3, 6, 8, 5, 9, 5, 2, 0, 0, 1, 4, 5, 5, 6, 7, 1, 6, 0, 6, 0, 4, 1, 5, 3, 0, 7, 2, 3, 0, 6, 7, 5, 3, 6, 7, 5, 5, 4, 1, 2, 2, 5, 0, 0, 8, 5, 4, 6, 1, 4, 7, 6, 9, 5, 8, 3, 1, 7, 2, 9, 2, 7, 5, 3, 3, 6, 3, 1, 5, 0, 4, 8, 6, 5, 8, 9, 1, 0, 6, 7, 6, 7, 3, 5, 4, 6
Offset: 1

Views

Author

N. J. A. Sloane, Jun 15 2004

Keywords

Comments

An algebraic number with minimal polynomial 4*x^4 - 6*x^2 + 1. - Charles R Greathouse IV, Mar 25 2014

Examples

			1.144122805635368595200145567160604153072306753675541225...
		

Crossrefs

Cf. A001622 (phi), A002193 (sqrt(2)), A017329, A094887, A239798.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (1+Sqrt(5) )/(2*Sqrt(2)); // G. C. Greubel, Sep 27 2018
  • Mathematica
    RealDigits[GoldenRatio/Sqrt[2],10,120][[1]] (* Harvey P. Dale, Feb 11 2015 *)
  • PARI
    sqrt(sqrt(5)+3)/2 \\ Charles R Greathouse IV, Mar 25 2014
    

Formula

Equals Product_{k>=0} (1 + (-1)^k/(10*k+5)). - Amiram Eldar, Nov 23 2024
Equals A094887/2 = sqrt(A239798). - Hugo Pfoertner, Nov 23 2024

A139619 a(n) = 171*n + 19.

Original entry on oeis.org

19, 190, 361, 532, 703, 874, 1045, 1216, 1387, 1558, 1729, 1900, 2071, 2242, 2413, 2584, 2755, 2926, 3097, 3268, 3439, 3610, 3781, 3952, 4123, 4294, 4465, 4636, 4807, 4978, 5149, 5320, 5491, 5662, 5833, 6004, 6175, 6346, 6517, 6688
Offset: 0

Views

Author

Omar E. Pol, May 21 2008

Keywords

Comments

Numbers of the 19th column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 19th column in the square array A057145.

Crossrefs

Programs

Formula

From Chai Wah Wu, Apr 14 2017: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 1.
G.f.: (152*x + 19)/(x - 1)^2. (End)
From Elmo R. Oliveira, Apr 11 2024: (Start)
E.g.f.: 19*exp(x)*(1 + 9*x).
a(n) = 19*A017173(n) = 19*(A051682(n+1) - A051682(n)). (End)

A194801 Square array read by antidiagonals: T(n,k) = k*((n+1)*k-n+1)/2, k = 0, +- 1, +- 2,..., n >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 3, 0, 1, 2, 4, 1, 0, 1, 3, 5, 4, 6, 0, 1, 4, 6, 7, 9, 3, 0, 1, 5, 7, 10, 12, 9, 10, 0, 1, 6, 8, 13, 15, 15, 16, 6, 0, 1, 7, 9, 16, 18, 21, 22, 16, 15, 0, 1, 8, 10, 19, 21, 27, 28, 26, 25, 10, 0, 1, 9, 11, 22, 24, 33, 34, 36, 35
Offset: 0

Views

Author

Omar E. Pol, Feb 05 2012

Keywords

Comments

Note that a single formula gives several types of numbers. Row 0 lists 0 together the Molien series for 3-dimensional group [2,k]+ = 22k. Row 1 lists, except first zero, the squares repeated. If n >= 2, row n lists the generalized (n+3)-gonal numbers, for example: row 2 lists the generalized pentagonal numbers A001318. See some other examples in the cross-references section.

Examples

			Array begins:
(A008795): 0, 1,  0,  3,  1,  6,  3, 10,   6,  15,  10...
(A008794): 0, 1,  1,  4,  4,  9,  9, 16,  16,  25,  25...
A001318:   0, 1,  2,  5,  7, 12, 15, 22,  26,  35,  40...
A000217:   0, 1,  3,  6, 10, 15, 21, 28,  36,  45,  55...
A085787:   0, 1,  4,  7, 13, 18, 27, 34,  46,  55,  70...
A001082:   0, 1,  5,  8, 16, 21, 33, 40,  56,  65,  85...
A118277:   0, 1,  6,  9, 19, 24, 39, 46,  66,  75, 100...
A074377:   0, 1,  7, 10, 22, 27, 45, 52,  76,  85, 115...
A195160:   0, 1,  8, 11, 25, 30, 51, 58,  86,  95, 130...
A195162:   0, 1,  9, 12, 28, 33, 57, 64,  96, 105, 145...
A195313:   0, 1, 10, 13, 31, 36, 63, 70, 106, 115, 160...
A195818:   0, 1, 11, 14, 34, 39, 69, 76, 116, 125, 175...
		

Crossrefs

Rows (0-11): 0 together with A008795, (truncated A008794), A001318, A000217, A085787, A001082, A118277, A074377, A195160, A195162, A195313, A195818
Columns (0-9): A000004, A000012, A001477, (truncated A000027), A016777, (truncated A008585), A016945, (truncated A016957), A017341, (truncated A017329).
Cf. A139600.

A322489 Numbers k such that k^k ends with 4.

Original entry on oeis.org

2, 18, 22, 38, 42, 58, 62, 78, 82, 98, 102, 118, 122, 138, 142, 158, 162, 178, 182, 198, 202, 218, 222, 238, 242, 258, 262, 278, 282, 298, 302, 318, 322, 338, 342, 358, 362, 378, 382, 398, 402, 418, 422, 438, 442, 458, 462, 478, 482, 498, 502, 518, 522, 538, 542, 558
Offset: 1

Views

Author

Bruno Berselli, Dec 12 2018

Keywords

Comments

Also numbers k == 2 (mod 4) such that 2^k and k^2 end with the same digit.
Numbers congruent to {2, 18} mod 20. - Amiram Eldar, Feb 27 2023

Crossrefs

Subsequence of A139544, A235700.
Numbers k such that k^k ends with d: A008592 (d=0), A017281 (d=1), A067870 (d=3), this sequence (d=4), A017329 (d=5), A271346 (d=6), A322490 (d=7), A017377 (d=9).

Programs

  • GAP
    List([1..70], n -> 10*n+3*(-1)^n-5);
    
  • Julia
    [10*n+3*(-1)^n-5 for n in 1:70] |> println
    
  • Magma
    [10*n+3*(-1)^n-5: n in [1..70]];
    
  • Maple
    select(n->n^n mod 10=4,[$1..558]); # Paolo P. Lava, Dec 18 2018
  • Mathematica
    Table[10 n + 3 (-1)^n - 5, {n, 1, 60}]
  • Maxima
    makelist(10*n+3*(-1)^n-5, n, 1, 70);
    
  • PARI
    apply(A322489(n)=10*n+3*(-1)^n-5, [1..70]) \\ M. F. Hasler, Dec 14 2018
    
  • PARI
    Vec(2*x*(1 + 8*x + x^2) / ((1 - x)^2*(1 + x)) + O(x^70)) \\ Colin Barker, Dec 13 2018
  • Python
    [10*n+3*(-1)**n-5 for n in range(1, 70)]
    
  • Sage
    [10*n+3*(-1)^n-5 for n in (1..70)]
    

Formula

O.g.f.: 2*x*(1 + 8*x + x^2)/((1 + x)*(1 - x)^2).
E.g.f.: 2 + 3*exp(-x) + 5*(2*x - 1)*exp(x).
a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).
a(n) = 10*n + 3*(-1)^n - 5. Therefore:
a(n) = 10*n - 8 for odd n;
a(n) = 10*n - 2 for even n.
a(n+2*k) = a(n) + 20*k.
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(2*Pi/5)*Pi/20 = sqrt(5+2*sqrt(5))*Pi/20. - Amiram Eldar, Feb 27 2023

A332300 The least prime factor of the numerator of Bernoulli(2*n), or 1 if the numerator is 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 691, 7, 3617, 43867, 283, 11, 103, 13, 7, 5, 37, 17, 26315271553053477373, 19, 137616929, 1520097643918070802691, 11, 23, 653, 5, 13, 39409, 7, 29, 2003, 31, 1226592271, 11, 17, 5, 3112655297839, 37, 19, 13, 631, 41, 233, 43, 11, 5, 23, 47, 7823741903
Offset: 0

Views

Author

Amiram Eldar, Feb 09 2020

Keywords

Comments

a(n)=5 if and only if n is in A017329. - Robert Israel, Feb 09 2020
From Chai Wah Wu, Feb 10 2020: (Start)
For n > 1, clearly if a(n) = n, then n is prime. However, the converse is not true. Prime numbers p such that a(p) != p are: 2, 3, 109, 167, 211, 227, 271, ...
Conjecture: for prime p > 3, p is a prime factor of the numerator of Bernoulli(2*p), thus the conjecture implies that a(p) <= p for prime p.
(End)

Examples

			a(10) = 283, since Bernoulli(2*10) = -174611/330, and 283 is the least prime factor of its numerator, 174611 = 283 * 617.
		

Crossrefs

Programs

  • Magma
    [n le 4 select 1 else Min(PrimeDivisors(Abs(Numerator(Bernoulli(2*n))))):n in [0..48]]; // Marius A. Burtea, Feb 09 2020
    
  • Mathematica
    Array[FactorInteger[Abs @ Numerator @  BernoulliB[2*#]][[1, 1]] &, 30, 0]
  • PARI
    a(n) = my(x=abs(numerator(bernfrac(2*n)))); if (x==1, 1, vecmin(factor(x)[,1])); \\ Michel Marcus, Feb 09 2020
    
  • Python
    from sympy import bernoulli, primefactors
    def A332300(n):
        x = abs(bernoulli(2*n).p)
        return 1 if x == 1 else min(primefactors(x)) # Chai Wah Wu, Feb 10 2020

Formula

a(n) = A020639(abs(A000367(n))).

A376538 Natural numbers whose iterated squaring modulo 1000 eventually settles at the attractor 1.

Original entry on oeis.org

1, 57, 193, 249, 251, 307, 443, 499, 501, 557, 693, 749, 751, 807, 943, 999, 1001, 1057, 1193, 1249, 1251, 1307, 1443, 1499, 1501, 1557, 1693, 1749, 1751, 1807, 1943, 1999, 2001, 2057, 2193, 2249, 2251, 2307, 2443, 2499, 2501, 2557, 2693, 2749, 2751, 2807
Offset: 1

Views

Author

Martin Renner, Sep 26 2024

Keywords

Comments

The natural numbers decompose into eight categories under the operation of repeated squaring modulo 1000, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (this sequence), 376 (cf. A376539), or 625 (cf. A017329), two of which eventually enter one of the 4-cycles 176, 976, 576, 776 (cf. A376540) or 201, 401, 801, 601 (cf. A376541), and two of which eventually enter one of the 20-cycles 16, 256, 536, 296, 616, 456, 936, 96, 216, 656, 336, 896, 816, 856, 736, 696, 416, 56, 136, 496 (cf. A376508) or 41, 681, 761, 121, 641, 881, 161, 921, 241, 81, 561, 721, 841, 281, 961, 521, 441, 481, 361, 321 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length four: 56, 136, 56, 2, ...

Examples

			57^2 = 249 -> 249^2 = 1 -> 1^2 = 1 -> ... (mod 1000).
		

Crossrefs

A376539 Natural numbers whose iterated squaring modulo 1000 eventually settles at the attractor 376.

Original entry on oeis.org

68, 124, 126, 182, 318, 374, 376, 432, 568, 624, 626, 682, 818, 874, 876, 932, 1068, 1124, 1126, 1182, 1318, 1374, 1376, 1432, 1568, 1624, 1626, 1682, 1818, 1874, 1876, 1932, 2068, 2124, 2126, 2182, 2318, 2374, 2376, 2432, 2568, 2624, 2626, 2682, 2818, 2874
Offset: 1

Views

Author

Martin Renner, Sep 26 2024

Keywords

Comments

The natural numbers decompose into eight categories under the operation of repeated squaring modulo 1000, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376538), 376 (this sequence), or 625 (cf. A017329), two of which eventually enter one of the 4-cycles 176, 976, 576, 776 (cf. A376540) or 201, 401, 801, 601 (cf. A376541), and two of which eventually enter one of the 20-cycles 16, 256, 536, 296, 616, 456, 936, 96, 216, 656, 336, 896, 816, 856, 736, 696, 416, 56, 136, 496 (cf. A376508) or 41, 681, 761, 121, 641, 881, 161, 921, 241, 81, 561, 721, 841, 281, 961, 521, 441, 481, 361, 321 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length four: 56, 2, 56, 136, ...

Examples

			68^2 = 624 -> 624^2 = 376 -> 376^2 = 376 -> ... (mod 1000).
		

Crossrefs

A376540 Natural numbers whose iterated squaring modulo 1000 eventually enters the 4-cycle 176, 976, 576, 776.

Original entry on oeis.org

18, 24, 26, 32, 74, 76, 82, 118, 132, 168, 174, 176, 218, 224, 226, 232, 268, 274, 276, 282, 324, 326, 332, 368, 382, 418, 424, 426, 468, 474, 476, 482, 518, 524, 526, 532, 574, 576, 582, 618, 632, 668, 674, 676, 718, 724, 726, 732, 768, 774, 776, 782, 824
Offset: 1

Views

Author

Martin Renner, Sep 26 2024

Keywords

Comments

The natural numbers decompose into eight categories under the operation of repeated squaring modulo 1000, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376538), 376 (cf. A376539), or 625 (cf. A017329), two of which eventually enter one of the 4-cycles 176, 976, 576, 776 (this sequence) or 201, 401, 801, 601 (cf. A376541), and two of which eventually enter one of the 20-cycles 16, 256, 536, 296, 616, 456, 936, 96, 216, 656, 336, 896, 816, 856, 736, 696, 416, 56, 136, 496 (cf. A376508) or 41, 681, 761, 121, 641, 881, 161, 921, 241, 81, 561, 721, 841, 281, 961, 521, 441, 481, 361, 321 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length sixteen: 6, 2, 6, 42, 2, 6, 36, 14, 36, 6, 2, 42, 6, 2, 6, 36, ...

Examples

			18^2 = 324 -> 324^2 = 976 -> 976^2 = 576 -> 576^2 = 776 -> 776^2 = 176 -> 176^2 = 976 -> ... (mod 1000).
		

Crossrefs

A376541 Natural numbers whose iterated squaring modulo 1000 eventually enters the 4-cycle 201, 401, 801, 601.

Original entry on oeis.org

7, 43, 49, 51, 93, 99, 101, 107, 143, 149, 151, 157, 199, 201, 207, 243, 257, 293, 299, 301, 343, 349, 351, 357, 393, 399, 401, 407, 449, 451, 457, 493, 507, 543, 549, 551, 593, 599, 601, 607, 643, 649, 651, 657, 699, 701, 707, 743, 757, 793, 799, 801, 843
Offset: 1

Views

Author

Martin Renner, Sep 26 2024

Keywords

Comments

The natural numbers decompose into eight categories under the operation of repeated squaring modulo 1000, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376538), 376 (cf. A376539), or 625 (cf. A017329), two of which eventually enter one of the 4-cycles 176, 976, 576, 776 (cf. A376540) or 201, 401, 801, 601 (this sequence), and two of which eventually enter one of the 20-cycles 16, 256, 536, 296, 616, 456, 936, 96, 216, 656, 336, 896, 816, 856, 736, 696, 416, 56, 136, 496 (cf. A376508) or 41, 681, 761, 121, 641, 881, 161, 921, 241, 81, 561, 721, 841, 281, 961, 521, 441, 481, 361, 321 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length sixteen: 36, 6, 2, 42, 6, 2, 6, 36, 6, 2, 6, 42, 2, 6, 36, 14, ...

Examples

			7^2 = 49 -> 49^2 = 401 -> 401^2 = 801 -> 801^2 = 601 -> 601^2 = 201 -> 201^2 = 401 -> ... (mod 1000).
		

Crossrefs

A017333 a(n) = (10*n + 5)^5.

Original entry on oeis.org

3125, 759375, 9765625, 52521875, 184528125, 503284375, 1160290625, 2373046875, 4437053125, 7737809375, 12762815625, 20113571875, 30517578125, 44840334375, 64097340625, 89466096875, 122298103125, 164130859375, 216699865625, 281950621875, 362050628125, 459401384375
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A272914 (first comment). [Bruno Berselli, May 26 2016]

Programs

  • Magma
    [(10*n+5)^5: n in [0..25]]; // Vincenzo Librandi, Aug 02 2011
  • Mathematica
    (10*Range[0,20]+5)^5 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{3125,759375,9765625,52521875,184528125,503284375},20] (* Harvey P. Dale, May 15 2018 *)

Formula

G.f.: 3125*(x+1)*(x^4+236*x^3+1446*x^2+236*x+1)/(x-1)^6. - Colin Barker, Nov 14 2012
From Amiram Eldar, Apr 18 2023: (Start)
a(n) = A017329(n)^5.
a(n) = 5^5 * A016757(n).
Sum_{n>=0} 1/a(n) = 31*zeta(5)/100000.
Sum_{n>=0} (-1)^n/a(n) = Pi^5/960000. (End)
Previous Showing 31-40 of 63 results. Next